References
- Allers, T., Lichten, M. (2001). Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47-57. https://doi.org/10.1016/S0092-8674(01)00416-0
- Borner, G.V., Kleckner, N., and Hunter, N. (2004). Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29-45. https://doi.org/10.1016/S0092-8674(04)00292-2
- Busygina, V., Sehorn, M.G., Shi, I.Y., Tsubouchi, H., Roeder, G.S., and Sung, P. (2008). Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22, 786-795. https://doi.org/10.1101/gad.1638708
- Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125. https://doi.org/10.1038/nature13771
- Chan, Y.L., Brown, M.S., Qin, D., Handa, N., and Bishop, D.K. (2014). The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J. Biol. Chem. 289, 18076-18086. https://doi.org/10.1074/jbc.M114.558601
- Chi, P., San Filippo, J., Sehorn, M.G., Petukhova, G.V., and Sung, P. (2007). Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747-1757. https://doi.org/10.1101/gad.1563007
- Ferrari, S.R., Grubb, J., and Bishop, D.K. (2009). The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae. J. Biol. Chem. 284, 11766-11770. https://doi.org/10.1074/jbc.C900023200
- Garcia, V., Phelps, S.E., Gray, S., and Neale, M.J. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241-244. https://doi.org/10.1038/nature10515
- Gerton, J.L., and Hawley, R.S. (2005). Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477-487. https://doi.org/10.1038/nrg1614
- Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M., and Shinohara, A. (2004). A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927-940. https://doi.org/10.1016/j.cell.2004.10.031
- Henry, J.M., Camahort, R., Rice, D.A., Florens, L., Swanson, S.K., Washburn, M.P., and Gerton, J.L. (2006). Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol. Cell. Biol. 26, 2913-2923. https://doi.org/10.1128/MCB.26.8.2913-2923.2006
- Hong, S., Sung, Y., Yu, M., Lee, M., Kleckner, N., and Kim, K.P. (2013a). The logic and mechanism of homologous recombination partner choice. Mol. Cell 51, 440-453. https://doi.org/10.1016/j.molcel.2013.08.008
- Hong, S., and Kim, K.P. (2013b). Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae. Mol. Cells 36, 446-454. https://doi.org/10.1007/s10059-013-0215-6
- Hong, S., Choi, E.H., and Kim, K.P. (2015). Ycs4 is required for efficient double-strand break formation and homologous recombination during meiosis. J. Microbiol. Biotechnol. 25, 1026-1035. https://doi.org/10.4014/jmb.1504.04013
- Hunter, N., and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to doubleholliday junction transition of meiotic recombination. Cell 106, 59-70. https://doi.org/10.1016/S0092-8674(01)00430-5
- Kang, H.A., Shin, H.C., Kalantzi, A.S., Toseland, C.P., Kim, H.M., Gruber, S., Peraro, M.D., and Oh, B.H. (2015). Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res. 43, 3841-3856. https://doi.org/10.1093/nar/gkv172
- Keeney, S. (2001). Mechanism and control of meiotic recombination initiation. Curr. Topics Dev. Biol. 52, 1-53. https://doi.org/10.1016/S0070-2153(01)52008-6
- Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. (2010). Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924-937. https://doi.org/10.1016/j.cell.2010.11.015
- Koszul, R., Kim, K.P., Prentiss, M., Kleckner, N., and Kameoka, S. (2008). Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188-1201. https://doi.org/10.1016/j.cell.2008.04.050
- Lao, J.P., Cloud, V., Huang, C.C., Grubb, J., Thacker, D., Lee, C.Y., Dresser, M.E., Hunter, N., and Bishop, D.K. (2013). Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS genetics 9, e1003978. https://doi.org/10.1371/journal.pgen.1003978
- Lee, M.S., Yu, M., Kim, K.Y., Park, G.H., Kwack, K.B., and Kim, K.P. (2015a). Functional validation of rare human genetic variants involved in homologous recombination using Saccharomyces cerevisiae. PLoS One 10, e0124152. https://doi.org/10.1371/journal.pone.0124152
- Lee, M.S., Yoon, S.W., and Kim, K.P. (2015b). Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25, 598-605. https://doi.org/10.4014/jmb.1501.01081
- Leu, J.Y., Chua, P.R., and Roeder, G.S. (1998). The meiosis-Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375-386. https://doi.org/10.1016/S0092-8674(00)81480-4
- Lukaszewicz, A., Shodhan, A., and Loidl, J. (2015). Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair 35, 137-143. https://doi.org/10.1016/j.dnarep.2015.08.005
- Mancera, E., Bourgon, R., Brozzi, A., Huber, W., Steinmetz, L. M. (2008). High-resolution mapping of meiotic crossovers and noncrossovers in yeast. Nature 454, 479-485. https://doi.org/10.1038/nature07135
- Martini, E., Diaz, R. L., Hunter, N., Keeney, S. (2006). Crossover homeostasis in yeast meiosis. Cell 156, 285-95.
- Neale, M.J., and Keeney, S. (2006). Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153-158. https://doi.org/10.1038/nature04885
- Niu, H., Li, X., Job, E., Park, C., Moazed, D., Gygi, S.P., and Hollingsworth, N.M. (2007). Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol. Cell. Biol. 27, 5456-5467. https://doi.org/10.1128/MCB.00416-07
- Niu, H., Wan, L., Busygina, V., Kwon, Y., Allen, J.A., Li, X., Kunz, R.C., Kubota, K., Wang, B., Sung, P., et al. (2009). Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell 36, 393-404. https://doi.org/10.1016/j.molcel.2009.09.029
- Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259-272. https://doi.org/10.1016/j.cell.2007.05.035
- Petukhova, G.V., Romanienko, P.J., Camerini-Otero, R. D. (2003). The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927-936. https://doi.org/10.1016/S1534-5807(03)00369-1
- Petukhova, G.V., Pezza, R.J., Vanevski, F., Ploquin, M., Masson, J.Y., and Camerini-Otero, R.D. (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449-453. https://doi.org/10.1038/nsmb923
- Pezza, R.J., Voloshin, O.N., Vanevski, F., and Camerini-Otero, R.D. (2007). Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 21, 1758-1766. https://doi.org/10.1101/gad.1562907
- Pezza, R.J., Voloshin, O.N., Volodin, A.A., Boateng, K.A., Bellani, M.A., Mazin, A.V., and Camerini-Otero, R.D. (2014). The dual role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res. 42, 2346-2357. https://doi.org/10.1093/nar/gkt1234
- Schwacha, A., and Kleckner, N. (1997). Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135. https://doi.org/10.1016/S0092-8674(00)80378-5
- Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N., and Bishop, D. (1997). Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 10, 615-629.
- Tracy, L.C., and Nancy, M.H. (2010). Mek1 suppression of meiotic double-strand break repair is specific to sister chromatids, chromosome autonomous and independent of Rec8 cohesin complexes. Genetics 185, 771-782. https://doi.org/10.1534/genetics.110.117523
- Tsubouchi, H., and Roeder, G.S. (2002). The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell. Biol. 22, 3078-3088. https://doi.org/10.1128/MCB.22.9.3078-3088.2002
- Tsubouchi, H., and Roeder, G.S. (2004). The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219-1230. https://doi.org/10.1534/genetics.103.025700
- Zakharyevich, K., Ma, Y., Tang, S., Hwang, P.Y., Boiteux, S., and Hunter, N. (2010). Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40, 1001-1015. https://doi.org/10.1016/j.molcel.2010.11.032
Cited by
- So similar yet so different: The two ends of a double strand break 2017, https://doi.org/10.1016/j.mrfmmm.2017.06.007
- Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase vol.115, pp.43, 2018, https://doi.org/10.1073/pnas.1810457115
- Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae vol.27, pp.2, 2017, https://doi.org/10.4014/jmb.1610.10074
- Roles of Budding Yeast Hrr25 in Recombination and Sporulation vol.27, pp.6, 2016, https://doi.org/10.4014/jmb.1701.01016
- The biochemistry of early meiotic recombination intermediates vol.17, pp.23, 2018, https://doi.org/10.1080/15384101.2018.1553355
- Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis vol.52, pp.10, 2016, https://doi.org/10.5483/bmbrep.2019.52.10.245