DOI QR코드

DOI QR Code

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae (Department of Life Sciences, Chung-Ang University) ;
  • Kong, Yoon-Ju (Department of Life Sciences, Chung-Ang University) ;
  • Hong, Soo-Gil (Department of Life Sciences, Chung-Ang University) ;
  • Kim, Keun Pil (Department of Life Sciences, Chung-Ang University)
  • Received : 2016.03.28
  • Accepted : 2016.05.12
  • Published : 2016.07.31

Abstract

During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

Keywords

References

  1. Allers, T., Lichten, M. (2001). Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47-57. https://doi.org/10.1016/S0092-8674(01)00416-0
  2. Borner, G.V., Kleckner, N., and Hunter, N. (2004). Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29-45. https://doi.org/10.1016/S0092-8674(04)00292-2
  3. Busygina, V., Sehorn, M.G., Shi, I.Y., Tsubouchi, H., Roeder, G.S., and Sung, P. (2008). Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22, 786-795. https://doi.org/10.1101/gad.1638708
  4. Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125. https://doi.org/10.1038/nature13771
  5. Chan, Y.L., Brown, M.S., Qin, D., Handa, N., and Bishop, D.K. (2014). The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J. Biol. Chem. 289, 18076-18086. https://doi.org/10.1074/jbc.M114.558601
  6. Chi, P., San Filippo, J., Sehorn, M.G., Petukhova, G.V., and Sung, P. (2007). Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747-1757. https://doi.org/10.1101/gad.1563007
  7. Ferrari, S.R., Grubb, J., and Bishop, D.K. (2009). The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae. J. Biol. Chem. 284, 11766-11770. https://doi.org/10.1074/jbc.C900023200
  8. Garcia, V., Phelps, S.E., Gray, S., and Neale, M.J. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241-244. https://doi.org/10.1038/nature10515
  9. Gerton, J.L., and Hawley, R.S. (2005). Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477-487. https://doi.org/10.1038/nrg1614
  10. Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M., and Shinohara, A. (2004). A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927-940. https://doi.org/10.1016/j.cell.2004.10.031
  11. Henry, J.M., Camahort, R., Rice, D.A., Florens, L., Swanson, S.K., Washburn, M.P., and Gerton, J.L. (2006). Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol. Cell. Biol. 26, 2913-2923. https://doi.org/10.1128/MCB.26.8.2913-2923.2006
  12. Hong, S., Sung, Y., Yu, M., Lee, M., Kleckner, N., and Kim, K.P. (2013a). The logic and mechanism of homologous recombination partner choice. Mol. Cell 51, 440-453. https://doi.org/10.1016/j.molcel.2013.08.008
  13. Hong, S., and Kim, K.P. (2013b). Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae. Mol. Cells 36, 446-454. https://doi.org/10.1007/s10059-013-0215-6
  14. Hong, S., Choi, E.H., and Kim, K.P. (2015). Ycs4 is required for efficient double-strand break formation and homologous recombination during meiosis. J. Microbiol. Biotechnol. 25, 1026-1035. https://doi.org/10.4014/jmb.1504.04013
  15. Hunter, N., and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to doubleholliday junction transition of meiotic recombination. Cell 106, 59-70. https://doi.org/10.1016/S0092-8674(01)00430-5
  16. Kang, H.A., Shin, H.C., Kalantzi, A.S., Toseland, C.P., Kim, H.M., Gruber, S., Peraro, M.D., and Oh, B.H. (2015). Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Res. 43, 3841-3856. https://doi.org/10.1093/nar/gkv172
  17. Keeney, S. (2001). Mechanism and control of meiotic recombination initiation. Curr. Topics Dev. Biol. 52, 1-53. https://doi.org/10.1016/S0070-2153(01)52008-6
  18. Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. (2010). Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924-937. https://doi.org/10.1016/j.cell.2010.11.015
  19. Koszul, R., Kim, K.P., Prentiss, M., Kleckner, N., and Kameoka, S. (2008). Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188-1201. https://doi.org/10.1016/j.cell.2008.04.050
  20. Lao, J.P., Cloud, V., Huang, C.C., Grubb, J., Thacker, D., Lee, C.Y., Dresser, M.E., Hunter, N., and Bishop, D.K. (2013). Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS genetics 9, e1003978. https://doi.org/10.1371/journal.pgen.1003978
  21. Lee, M.S., Yu, M., Kim, K.Y., Park, G.H., Kwack, K.B., and Kim, K.P. (2015a). Functional validation of rare human genetic variants involved in homologous recombination using Saccharomyces cerevisiae. PLoS One 10, e0124152. https://doi.org/10.1371/journal.pone.0124152
  22. Lee, M.S., Yoon, S.W., and Kim, K.P. (2015b). Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25, 598-605. https://doi.org/10.4014/jmb.1501.01081
  23. Leu, J.Y., Chua, P.R., and Roeder, G.S. (1998). The meiosis-Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375-386. https://doi.org/10.1016/S0092-8674(00)81480-4
  24. Lukaszewicz, A., Shodhan, A., and Loidl, J. (2015). Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair 35, 137-143. https://doi.org/10.1016/j.dnarep.2015.08.005
  25. Mancera, E., Bourgon, R., Brozzi, A., Huber, W., Steinmetz, L. M. (2008). High-resolution mapping of meiotic crossovers and noncrossovers in yeast. Nature 454, 479-485. https://doi.org/10.1038/nature07135
  26. Martini, E., Diaz, R. L., Hunter, N., Keeney, S. (2006). Crossover homeostasis in yeast meiosis. Cell 156, 285-95.
  27. Neale, M.J., and Keeney, S. (2006). Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153-158. https://doi.org/10.1038/nature04885
  28. Niu, H., Li, X., Job, E., Park, C., Moazed, D., Gygi, S.P., and Hollingsworth, N.M. (2007). Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol. Cell. Biol. 27, 5456-5467. https://doi.org/10.1128/MCB.00416-07
  29. Niu, H., Wan, L., Busygina, V., Kwon, Y., Allen, J.A., Li, X., Kunz, R.C., Kubota, K., Wang, B., Sung, P., et al. (2009). Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell 36, 393-404. https://doi.org/10.1016/j.molcel.2009.09.029
  30. Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. (2007). BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259-272. https://doi.org/10.1016/j.cell.2007.05.035
  31. Petukhova, G.V., Romanienko, P.J., Camerini-Otero, R. D. (2003). The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927-936. https://doi.org/10.1016/S1534-5807(03)00369-1
  32. Petukhova, G.V., Pezza, R.J., Vanevski, F., Ploquin, M., Masson, J.Y., and Camerini-Otero, R.D. (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449-453. https://doi.org/10.1038/nsmb923
  33. Pezza, R.J., Voloshin, O.N., Vanevski, F., and Camerini-Otero, R.D. (2007). Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 21, 1758-1766. https://doi.org/10.1101/gad.1562907
  34. Pezza, R.J., Voloshin, O.N., Volodin, A.A., Boateng, K.A., Bellani, M.A., Mazin, A.V., and Camerini-Otero, R.D. (2014). The dual role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res. 42, 2346-2357. https://doi.org/10.1093/nar/gkt1234
  35. Schwacha, A., and Kleckner, N. (1997). Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135. https://doi.org/10.1016/S0092-8674(00)80378-5
  36. Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N., and Bishop, D. (1997). Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 10, 615-629.
  37. Tracy, L.C., and Nancy, M.H. (2010). Mek1 suppression of meiotic double-strand break repair is specific to sister chromatids, chromosome autonomous and independent of Rec8 cohesin complexes. Genetics 185, 771-782. https://doi.org/10.1534/genetics.110.117523
  38. Tsubouchi, H., and Roeder, G.S. (2002). The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell. Biol. 22, 3078-3088. https://doi.org/10.1128/MCB.22.9.3078-3088.2002
  39. Tsubouchi, H., and Roeder, G.S. (2004). The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219-1230. https://doi.org/10.1534/genetics.103.025700
  40. Zakharyevich, K., Ma, Y., Tang, S., Hwang, P.Y., Boiteux, S., and Hunter, N. (2010). Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40, 1001-1015. https://doi.org/10.1016/j.molcel.2010.11.032

Cited by

  1. So similar yet so different: The two ends of a double strand break 2017, https://doi.org/10.1016/j.mrfmmm.2017.06.007
  2. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase vol.115, pp.43, 2018, https://doi.org/10.1073/pnas.1810457115
  3. Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae vol.27, pp.2, 2017, https://doi.org/10.4014/jmb.1610.10074
  4. Roles of Budding Yeast Hrr25 in Recombination and Sporulation vol.27, pp.6, 2016, https://doi.org/10.4014/jmb.1701.01016
  5. The biochemistry of early meiotic recombination intermediates vol.17, pp.23, 2018, https://doi.org/10.1080/15384101.2018.1553355
  6. Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis vol.52, pp.10, 2016, https://doi.org/10.5483/bmbrep.2019.52.10.245