DOI QR코드

DOI QR Code

Forensic Image Classification using Data Mining Decision Tree

데이터 마이닝 결정나무를 이용한 포렌식 영상의 분류

  • RHEE, Kang Hyeon (Chosun University, College of Electronics and Information Eng., Dept. of Electronics Eng.)
  • 이강현 (조선대학교 전자정보공과대학 전자공학과)
  • Received : 2016.05.03
  • Accepted : 2016.07.01
  • Published : 2016.07.25

Abstract

In digital forensic images, there is a serious problem that is distributed with various image types. For the problem solution, this paper proposes a classification algorithm of the forensic image types. The proposed algorithm extracts the 21-dim. feature vector with the contrast and energy from GLCM (Gray Level Co-occurrence Matrix), and the entropy of each image type. The classification test of the forensic images is performed with an exhaustive combination of the image types. Through the experiments, TP (True Positive) and FN (False Negative) is detected respectively. While it is confirmed that performed class evaluation of the proposed algorithm is rated as 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic Curve) is 0.9980 by the sensitivity and the 1-specificity. Also, the minimum average decision error is 0.1349. Also, at the minimum average decision error is 0.0179, the whole forensic image types which are involved then, our classification effectiveness is high.

디지털 포렌식 영상은 여러 가지 영상타입으로 위 변조되어 유통되는 심각한 문제가 대두되어 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 포렌식 영상의 분류 알고리즘을 제안한다. 제안된 알고리즘은 여러 가지 영상타입의 그레이 레벨 co-occurrence 행렬의 특성 중에서 콘트라스트와 에너지 그리고 영상의 엔트로피로 21-dim.의 특징벡터를 추출하고, 결정나무 플랜에서 분류학습을 위하여 PPCA를 이용하여 2-dim.으로 차원을 축소한다. 포렌식 영상의 분류 테스트는 영상 타입들의 전수조합에서 수행되었다. 실험을 통하여, TP (True Positive)와 FN (False Negative)을 검출하고, 제안된 알고리즘의 성능평가에서 민감도 (Sensitivity)와 1-특이도 (1-Specificity)의 AUROC (Area Under Receiver Operating Characteristic) 커브 면적은 0.9980으로 'Excellent(A)' 등급임을 확인하였다. 산출된 최소평균 판정에러 0.0179에서 분류할 포렌식 영상타입이 모두 포함되어 분류 효율성이 높다.

Keywords

References

  1. Kang Hyeon RHEE, "Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image," IEEK, Journal No. 51(3), pp. 27-34, 2014.7.
  2. Kang Hyeon RHEE, "Median Filtering Detection using Latent Growth Modeling," IEEK, Journal No. 52(1), pp. 61-68, Jan. 2015.
  3. Haralick, K. Shanmugam and Its'hak Dinstein, "Textural Features for Image Classification," IEEE Trasn. on Systems, Man and Cybemetics, Vol. SMC-3, No. 6, pp. 610-621, November 1973. https://doi.org/10.1109/TSMC.1973.4309314
  4. Wang, Li and He Dong Chen, "Texture Classification Using Texture Spectrum," Pattern Recognition, Vol. 23, No. 8, pp. 905-910, 1990. https://doi.org/10.1016/0031-3203(90)90135-8
  5. Pentland, A. P., "Fractal-based Description of Natural Science," IEEE Trans, on Pattern Analysis and Machine Intelligence, No. 6(6), pp. 661-674, 1984
  6. Cross, G. R., and A. K. Jain, "Markov Random Field Texture Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 1, pp. 25-39, 1983. https://doi.org/10.1109/TPAMI.1983.4767341
  7. Derin, H. and H. Elliot, "Modeling and Segmentation of Noisy Textured Images Using Gibbs Random Fields," IEEE Trans. Pattern Analysis and Machine Intelligence, No. 9(I), No. 39-55, 1987.
  8. http://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf
  9. Junshi Xia, Jocelyn Chanussot, Peijun Du and Xiyan He, "(Semi-) Supervised Probabilistic Principal Component Analysis for Hyperspectral Remote Sensing Image Classification," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, Issue: 6, pp. 2224-2236, 2014. https://doi.org/10.1109/JSTARS.2013.2279693
  10. http://vision.cs.aston.ac.uk/datasets/UCID/ucid.html
  11. G. Cao, Y. Zhao, R. Ni, L. Yu, and H. Tian, "Forensic detection of median filtering in digital images," in Proc. 2010 IEEE Int. Conf. Multimedia and EXPO, pp. 89-94, Jul. 2010.
  12. S. Wang, C. Lam, "Texture feature extraction using gray level gradient based co-occurrence matrices," IEEE International Conference on systems, Man, and Cybernetics, 1996, Vol. 1, pp. 267-271, 1996.