References
- Allotta, B., Conti, R., Meli, E. and Ridolfi, A. (2015), "Modeling and control of a full-scale roller-rig for the analysis of railway braking under degraded adhesion conditions", Proceedings of the IEEE Transactions on Control Systems Technology, 23(1), 186-196.
- Charles, G. and Goodall, R. (2006), "Low adhesion estimation", In Railway Condition Monitoring, Proceedings of the Institution of Engineering and Technology, 96-101.
- Charles, G., Goodall, R. and Dixon, R. (2008), "Model-based condition monitoring at the wheel-rail interface", Vehicle Syst. Dyn., 46(S1), 415-430. https://doi.org/10.1080/00423110801979259
- Conti, R., Meli, E., Ridolfi, A. and Rindi, A. (2014), "An innovative hardware in the loop architecture for the analysis of railway braking under degraded adhesion conditions through roller-rigs", Mechatronics, 24(2), 139-150. https://doi.org/10.1016/j.mechatronics.2013.12.011
- Goodall, R. and Li, H. (2000), "Solid axle and independently-rotating railway wheelsets-a control engineering assessment of stability", Vehicle Syst. Dyn., 33(1), 57-67. https://doi.org/10.1076/0042-3114(200001)33:1;1-5;FT057
- Goodall, R. and Mei, T.X. (2001), "Mechatronic strategies for controlling railway wheelsets with independently rotating wheels". Proceedings of the Advanced Intelligent Mechatronics, 1, 225-230.
- Guo, Y., Yu, Z., Shi, H. and Zhu, L. (2014), "The estimation approach of rail thermal stress based on vehicle-track dynamic responses", Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 840-846.
- Hata, T., Hirose, H., Kadowaki, S., Ohishi, K., Iida, N., Takagi, M. and Yasukawa, S. (2003), "Anti-slip readhesion control based on speed sensor-less vector control and disturbance observer for electric multiple units, series 205-5000 of East Japan Railway Company", Proceedings of the Industrial Technology, 2, 772-777.
- Hsu, Y.H.J., Laws, S.M. and Gerdes, J.C. (2010), "Estimation of tire slip angle and friction limits using steering torque", Proceedings of the IEEE Transactions on Control Systems Technology, 18(4), 896-907.
- Kim, H.Y., Lee, N.J., Lee, D.C. and Kang, C.G. (2014), "Hardware-in-the-loop simulation for a wheel slide protection system of a railway train", IFAC Proceedings, 47(3), 12134-12139. https://doi.org/10.3182/20140824-6-ZA-1003.02106
- Liao, W., Chen, H., Cai, W. and Song, Y. (2014), "A novel active adhesion control design for high speed trains without vehicle speed measurement", Proceedings of the 33rd Control Conference (CCC), 221-226.
- Lu, K., Song, Y. and Cai, W. (2014), "Robust adaptive re-adhesion control for high speed trains", Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 1215-1220.
- Malvezzi, M., Pugi, L., Papini, S., Rindi, A. and Toni, P. (2012), "Identification of a wheel--rail adhesion coefficient from experimental data during braking tests", Proceedings of the Institution of Mechanical Engineers, Part F: J. Rail Rapid Transit, 0954409712458490.
- Malvezzi, M., Vettori, G., Allotta, B., Pugi, L., Ridolfi, A. and Rindi, A. (2014), "A localization algorithm for railway vehicles based on sensor fusion between tachometers and inertial measurement units", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(4), 431-448. https://doi.org/10.1177/0954409713481769
- Mei, T.X. and Goodall, R.M. (2003), "Practical strategies for controlling railway wheelsets independently rotating wheels", J. Dyn. Syst. Measurement, Ctrl., 125(3), 354-360. https://doi.org/10.1115/1.1592191
- Meli, E., Ridolfi, A. and Rindi, A. (2014), "An innovative degraded adhesion model for railway vehicles: development and experimental validation", Meccanica, 49(4), 919-937. https://doi.org/10.1007/s11012-013-9839-z
- Mirabadi, A. and Khodadadi, A. (2009), "Slip and slide detection and compensation for odometery system, using adaptive fuzzy Kalman Filter", Sensor Lett., 7(1), 84-90. https://doi.org/10.1166/sl.2009.1014
- Ohishi, K., Kadowaki, S., Smizu, Y., Sano, T., Yasukawa, S. and Koseki, T. (2006), "Anti-slip readhesion control of electric commuter train based on disturbance observer considering bogie dynamics", Proceedings of the IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 5270-5275.
- Polach, O. (2005), "Creep forces in simulations of traction vehicles running on adhesion limit", Wear, 258(7), 992-1000. https://doi.org/10.1016/j.wear.2004.03.046
- Pugi, L., Malvezzi, M., Tarasconi, A., Palazzolo, A., Cocci, G. and Violani, M. (2006), "HIL simulation of WSP systems on MI-6 test rig", Vehicle Syst. Dyn., 44(sup1), 843-852. https://doi.org/10.1080/00423110600886937
- Radionov, I.A. and Mushenko, A.S. (2015), "The method of estimation of adhesion at "wheel-railway" contact point", Proceedings of the Control and Communications (SIBCON), 2015 International Siberian Conference on, 1-5.
- Shimizu, Y., Ohishi, K., Sano, T., Yasukawa, S. and Koseki, T. (2007), "Anti-slip re-adhesion control based on disturbance observer considering bogie vibration", Proceedings of the Power Electronics and Applications, 1-10.
- Shumway, R.H. and Stofer, D.S. (2004), Time series analysis and its applications, New York: Springer-Verlag.
- Soomro, Z.A. (2014), "Adhesion detection analysis by modeling rail wheel set dynamics under the assumption of constant creep coefficient", J. Mech., Electr. Power Vehicular Tech., 5(2), 99-106. https://doi.org/10.14203/j.mev.2014.v5.99-106
- Soomro, Z.A. (2014), "Analysis for kinematic modeling linearized railway wheelset dynamics", Int. J. Adv. Eng. Sci., 4(4), 1-6.
- Zarchan, P. and Musof, H. (2000), "Fundamentals of Kalman fltering: A practical approach. Progress in Astronautics and Aeronautics", Virginia: American Institute of Aeronautics and Astronautics, Inc.