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Abstract

The big data analysis has received much attention from the researchers working in
various fields because the big data has a great potential in detecting or predicting future
events such as epidemic outbreaks and changes in stock prices. Reflecting the current
popularity of big data analysis, many authors have proposed methods tracking influenza
epidemics based on internet-based information. The recently proposed ‘autoregressive
model using Google (ARGO) model’ (Yang et al., 2015) is one of those influenza track-
ing models that harness search queries from Google as well as the reports from the
Centers for Disease Control (CDC), and appears to outperform the existing method
such as ‘Google Flu Trends (GFT)’. Although the ARGO predicts well the outbreaks
of influenza, this study demonstrates that a classical seasonal autoregressive integrated
moving average (SARIMA) model can outperform the ARGO. The SARIMA model
incorporates more accurate seasonality of the past influenza activities and takes less
input variables into account. Our findings show that the SARIMA model is a functional
tool for monitoring influenza epidemics.

Keywords: ARGO model, big data, disease detection, Google flu trends, influenza epi-
demics, influenza-like illnesses activity estimation, SARIMA model.

1. Introduction

As the usage of internet grew rapidly coupled with the advent of smart phones, the
amount of information about their online activities has significantly increased during the
past decades. This huge amount of information collected from the web is called “big data”.
The issue of big data has received notable attention from practitioners in a variety of re-
search and industrial fields (Preis et al., 2013)) because the big data is considered to have
a considerable potential in predicting or estimating future events (Labrinidis and Jagadish,
2012)). In recent years, a number of studies have proposed models that track epidemic out-
breaks, such as influenza, Ebola (Wesolowski et al., 2014), and dengue (Chan et al., 2011),
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by taking advantage of publicly available online information. Among such diseases, influenza
has gotten special attention with regards to disease detection. Although majority of peo-
ple consider influenza a relatively common disease that rarely causes fatal effects on them,
influenza outbreaks actually bring about up to 500,000 deaths worldwide every year. From
1976 to 2007, the annual influenza-related deaths ranged from 3000 to 50,000 in the United
States only, approximately with an average of about 24,000 annual deaths. Therefore, vari-
ous methods based on information from the internet, such as Google, Yahoo, and Twitter,
have been proposed recently to estimate influenza-like illnesses (ILI) (ILI is defined as a
symptom of fever, greater than temperature of 37.8°C, and a cough or a sore throat that
seems to be most likely caused by influenza) activities (ILI activity level refers to the per-
centage of patients diagnosed with ILI compared with the total number of patients who
visited the hospital for any reason within a week) (Ginsberg et al., 2009; Polgreen et al.,
2008; Santillana et al., 2015; Bollen et al., 2011). As a relevant reference, see Hwang and Oh
(2016).

One of those methods based on a big data approach is the AutoRegression with GOogle
(ARGO), proposed by Yang et al. (2015). The ARGO simultaneously uses the Google search
data and ILI reports from the Centers for Disease Control (CDC) to track influenza out-
breaks. Although the ARGO appears to improve existing methods such as Google Flu Trends
(Cook et al., 2011; Santillana et al., 2014), it has two major shortcomings. The first is that
it does not fully reflect the time series properties such as the seasonality in influenza epi-
demics, failing to accurately estimate the ILI activity. The second is to take too many input
variables into account, so that the algorithm for implementation becomes quite complicated
and also needs a long time till drawing a conclusion. To overcome these defects, we instead
propose to employ a classical time series model, i.e. the seasonal autoregressive integrated
moving average (SARIMA) model which only uses the CDC’s ILI reports. In performing
this procedure, we first remove a seasonal effect and stochastic trend by differencing the
time series, and then apply model selection criteria such as Akaike’s information criterion
(AIC) to find an optimal SARIMA model. We then compare its performance with that of
the ARGO using the accuracy metrics in Yang et al. (2015).

Our findings show that the SARIMA model improves the accuracy of estimation by in-
corporating the long-term cyclic information or seasonality of the past ILI activities. Fur-
thermore, since our method only uses the data provided by the CDC, it has an advantage
over the ARGO in that it only takes one variable into consideration, which leads to sav-
ing the computing time significantly. Our method appears to remarkably outperform the
ARGO model even though it does not involve any publicly available online search data. It
may be because all important information is already locked in the time series themselves,
so that the SARIMA model without exogenous information can successfully extract out
the information. This coincides with the spirit of ‘autoregression’ scheme (Lee et al., 2013),
broadly appreciated among time series analysts: see also Lee and Kim (2013). Lazer et al.
(2014) mentions that Google constantly modifies its search algorithm and returns different
recommended additional search terms over time to support its business model. Thus, an
influenza-tracking model based on the Google searches would be affected by the change in
the algorithm because the modification would eventually affect people’s search behavior. In
contrast, our SARIMA model based method is free from the algorithm underlying Google’s
method.

The organization of this study is as follows. Section 2 introduces the ARGO and SARIMA



Comparison study of SARIMA and ARGO models for influenza epidemics prediction 1077

models and presents the procedure to choose an optimal model. Section 3 compares the
SARIMA model with the ARGO based on several metrics. Section 4 provides concluding
remarks.

2. Data description and seasonal model

Yang et al. (2015) introduces the ARGO model:
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as-where weakly-based observation y; = logit(p;) = log 1 ftpt refers to the logit-transformed
ILI activity level p; and X; ; denotes the Google search frequency of term ¢ among 100 Google
search terms at time ¢. Although the ARGO is designed to incorporate the seasonality in the
CDC-reported ILI activity level data, a closer inspection of the model shows that the ARGO
does not fully reflect seasonal effect. Motivated by this, we consider employing a classical
seasonal time series model, such as the seasonal ARIMA (SARIMA) model. Furthermore,

we discard the role of the X, ; in building up a SARIMA model.
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Figure 2.1 Time series plot of the logit-transformed CDC’s weighted ILI activity level

In this study, as in Yang et al. (2015), we use the weighted version of the CDC’s ILI
activity level (available at http:://gis.cdc.gov/grasp/fluview /fluportaldashboard.html; date
of access: November 12, 2015). Also, we use the logit-transformed the CDC’s weighted ILI
activity level, that is, xy = logit(w;), where w; denotes the weighted ILI activity level at
time t. Figure 2.1 presents the plot of z; from March 29, 2009 to July 11, 2015, which clearly
shows the existence of strong seasonal effect. To remove the seasonal effect, we take seasonal
difference, say, r; — x;_52. Figure 2.2 shows the plots of seasonal differenced time series,
and also, the first and second-order differenced time series after the seasonal differencing.
The Dickey-Fuller test actually shows that the seasonal differenced time series has a unit
root and its first-order differenced time series has no unit root. However, in this case, we
use the second-order differenced time series because it better captures the characteristics
of stationary time series. The autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the first and second differenced time series are plotted in Figures 2.3 and
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2.4. Figure 2.3 shows that the ACF of the first-order differenced time series has significant
peaks at too many lags compared with that of the second-order differenced time series. This
suggests that the second-order differenced time series is more tractable for analyzing the ILI
activity data set.
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Figure 2.3 ACF and PACF of the first-order difference of the seasonal differenced time series
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The SARIMA model, i.e. ARIMA(p,d,q) x (P,D,Q)s under consideration is as follows:
¢(B)®(B°)(1 - B*)P(1 - B)"x; = §(B)O(B")e, (2:2)

where s = 52, D = 1 and d = 2 are preassigned as discussed earlier, B denotes the back-shift
operator, and ¢, ®,60,0 are characteristic polynomials with orders p, P, q, @), respectively,
that should be determined from the data. Comparing the AIC values of candidate ARMA
models, we conclude that ARIMA(0,2,4) x (0,1,1)52 is an optimal model. More precisely,
the estimated SARIMA model is given by

(1 - B)*(1 — B*®)z; = (14 0.9076B — 0.1770B% + 0.2693B%)(1 + 0.4148 B%?)¢;.  (2.3)

Since the above model does not contain autoregressive (AR) part, hereafter, it is named
SIMA (52) for abbreviation.

3. Results and discussion

In this section, we conduct a comparison study of the performance of the SIMA(52) and
ARGO in the same settings as that of Yang et al. (2015). To this end, we examine the root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), correlation with the observed values or the CDC-reported weighted ILI activity
level, and correlation of increment (CI) with the observed values as follows:

) 1, . 2%
RMSE(’LUt,’U)t) = |:n Z(U}t ’LUt) i| ;

t=1

. 1.
MAE(y, w;) = 72|wt—wt|;

3

t=1
1 O by —
MAPE (o, w;) = — [ =],
n Wt
t=1
CI(t¢, wy) = Corr(wy — Wi—1, wy — wi—1).

The correlation of fitted value w to the true value of ILI activity level w refers to their
sample correlation coefficient.
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Figure 3.1 The plots of the true ILI activity levels (solid line) and the estimated ones (dotted line)
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Table 3.1 Comparison of SIMA(52) and ARGO for the estimation of influenza epidemics

Whole period Regular flu seasons (week 40 to week 20 next year)

Metrics Model 2009-2015 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015
RMSE STMA (52) 0.002 0.003 0.001 0.003 0.003 0.002
ARGO 0.611 0.599 0.801 0,687 0.306 0.418
MAE SIMA (52) 0.001 0.002 0.001 0.002 0.002 0.001
ARGO 0.649 0.560 0.738 0.655 0.392 0.473
MAPE SIMA (52) 0.065 0.101 0.062 0.071 0.072 0.053
ARGO 0.789 0.648 0.763 0.727 0.458 0.532
Correlation SIMA (52) 0.987 0.974 0.918 0.973 0.951 0.9%6
ARGO 0.986 0.988 0.931 0.968 0.993 0.994
Corr. of increment SIMA (52) 0.737 0.728 0.263 0.680 0.392 0.763
ARGO 0.748 0.796 0.280 0.526 0.945 0.911

Table 3.1 shows the summary of the metrics for the SIMA(52) and ARGO for different
time periods. It presents the values of the performance metrics for the whole period (2009-
2015) and the regular flu seasons (winter time) in each year from 2010 to 2015. The table
shows that for the whole time period, the SIMA(52) outperforms the ARGO in all metrics
except for the correlation of increment. More precisely in terms of the RMSE, MAE, and
MAPE, the SIMA(52) appears to produce the values considerably lower than those of the
ARGO. With regard to the correlation, the SIMA (52) (r = 98.7%) slightly outperforms the
ARGO (r = 98.6%) for the whole time period, whereas during the regular flu seasons, the
former has a higher correlation only for 2012-2013 season and a slightly lower correlation in
the remaining flu seasons. In short, the SIMA(52) has a performance similar to the ARGO
in terms of correlation. A similar conclusion can be made for the correlation of increments:
Table 3.1 shows that the SIMA(52) has a performance similar to the ARGO except during
the 2013-2014 flu season. Figure 3.1 shows the fitted values of the SIMA(52) (dotted line)
against the observed ILI activity level reported by the CDC.

Overall, our findings show that the SARIMA model outperforms the ARGO in accuracy.
What is more, considerably less time is taken to fit the data when using the former (about 27
seconds) than when utilizing the latter (about 8 minutes). Because the ARGO outperforms
influenza tracking models based on Google searches, it is believed that the SIMA(52) is
more suitable in tracking influenza than flu tracking methodologies using publicly available
Google search data.

4. Concluding remarks

In this study, we employed a SARIMA model, named SIMA(52), to predict the influenza
epidemics and compared its performance with the ARGO method based on Google searches,
and demonstrated that our method outperforms the ARGO. Reflecting one year’s seasonal
effect of the historical ILI activity plays a key role in our analysis: the twice differencing
also helps stabilize the time-varying variances. Another aspect is that our approach does
not harness the Google searches unlike the ARGO but only uses officially-reported data
provided by the national institution, which enables us to avoid the high sensitivity to public’s
overreaction to the disease on internet. Our approach also shares the same spirit as in
Lazer et al. (2014) who pointed out the limitation of influenza-tracking models based on
the Google searches. This also coincides with the spirit of ‘autoregression’ such that all
the information is already locked in time series themselves other than exogenous variables.
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Although the SIMA(52) demonstrates an outstanding performance somewhat superior to
that of the ARGO, it still has the same defect as the ARGO has because the CDC reports
ILI activity level one~two weeks after the target date, and henceforth, make an information
gap, which seems inevitable as far as only a weekly data is available for prediction. This study
reminds the practitioners of the importance of classical methods in advance of adopting a
trendy one. Both methods have their own merit, and therefore, a great care is necessary
when implementing them for actual usage.
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