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Abstract
Football match predictions are of great interest to fans and sports press. In the last few years it has been

the focus of several studies. In this paper, we propose the Poisson regression model in order to football match
outcomes. We applied the proposed methodology to two national competitions: the 2012–2013 English Premier
League and the 2015 Brazilian Football League. The number of goals scored by each team in a match is assumed
to follow Poisson distribution, whose average reflects the strength of the attack, defense and the home team ad-
vantage. Inferences about all unknown quantities involved are made using a Bayesian approach. We calculate the
probabilities of win, draw and loss for each match using a simulation procedure. Besides, also using simulation,
the probability of a team qualifying for continental tournaments, being crowned champion or relegated to the
second division is obtained.

Keywords: prediction, football, attack and defense effect, Poisson regression, Bayesian inference,
MCMC, simulation, de Finetti measure

1. Introduction

Football, originally practiced in England, is one of the most popular collective sports worldwide. A
particular characteristic of this sport is that the best team it is not always the winner of a match or a
tournament, which causes a climate of expectation among players and fans.

In the last few years, some studies have addressed the prediction of outcomes for matches of the
World Cup, such as, Dyte and Clarke (2000), Volf (2009), and Suzuki et al. (2010). Dyte and Clarke
(2000) proposed a Poisson regression model considering control variables, which consist of the rating
for each team and the match venue given by the Federation Internationale of Football Association
(FIFA). The authors used their results and other results about the quality of forecasts to simulate the
1998 FIFA World Cup. Volf (2009) consider a counting processes approach, in order to model a
match score as two interacting time-dependent random point process. The interaction between teams
are modeled via a semi-parametric multiplicative regression model of intensity. The authors applied
this model to the analysis of the performance of the eight teams that reached the quarter-finals of the
2006 FIFA World Cup.

Suzuki et al. (2010), proposed a Bayesian approach to predict of the outcomes of matches using
specialists’ opinions and FIFA rankings to build a Power prior. Using simulations, the authors cal-
culate the probabilities of wins, draws, losses and odds of the teams being ranked in the group stage
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are obtained. Bastos and da Rosa (2013) developed a Bayesian methodology for the Poisson-gamma
model in which the priors are chosen considering historical and recent information. The authors
calculate the probabilities of win, draw and loss for the 2010 FIFA World Cup games.

Several articles also focused on the prediction of outcomes in national leagues. Among them,
Keller (1994) considered the Poisson distribution for the number of goals scored by England, Ireland,
Scotland and Wales in the British International Championship (1883–1980). Lee (1997) developed
a generalized linear model with application to final rank analysis. Brillinger (2008) modeled the
probabilities of win, tie and loss through an ordinal-value model and applied the model to the Brazilian
Series A championship. Karlis and Ntzoufras (2009) applied the Skellam’s distribution to model the
difference of goals between home and away teams. The authors illustrated the model using the 2006–
2007 English Premier League. Koopman and Lit (2015) developed a statistical model to predict
the games of the 2010–2011 and 2011–2012 English Premier Leagues, assuming a bivariate Poisson
distribution with coefficients that stochastically changed intensity over time.

An issue about papers cited above is that none consider the home team factor to calculate the
probabilities of interest. For Maher (1982) it is important to add a constant factor to all teams when
they play at home. Following this approach, Dixon and Coles (1997) presented a study considering
6,000 matches of English teams in the 1993–1995 period. Results showed that 46% of the matches
was won by the home team, 27% were draws and in 27% the home team lost. In a similar study, Knorr-
Held (2000) provided data of the 1996–1997 season of the German Bundesliga. Results showed that in
51% of the matches the win was of the home team and in only 26% the home team lost. Considering
the season 2011–2012 of the English Premier League, 47% of the matches ended with win of the
home team and only 27% ended with defeat of the home team. These results show us that, for some
reason, there seems to be an inherent advantage for the team if it is playing at home. In this way, the
effect of playing at home can be introduced in the model in order to predict the probabilities of win,
draw and lose.

In this paper, we model the number of goal scored by each team in a match by a Poisson distri-
bution, whose average reflects the strength of the attack and defense of the team and effect of being
playing at home. Inferences about all the unknowns quantities involved are made using a Bayesian
approach. We illustrate the performance of the proposed method considering the outcomes of the
2012–2013 season of the English Premier League (EPL) and the outcomes of the 2015 Brazilian
Football League (BFL).

Using a simulation study, we calculate the probabilities of win, draw and lose for each team
in each round of the EPL and BFL. We also present the probability of a team qualifying for the
continental tournaments, being crowned champion or relegated to the second division. All computer
implementations were performed using OpenBUGS (Spiegelhalter et al., 2003) and R systems (R
Development Core Team, 2012) in the R2WinBUGS package (Gelman et al., 2006).

The remainder of the paper is organized as follows. In Section 2, we present the Poisson regression
model and expressions used to calculate the probabilities of win, draw and defeat for a football game.
Sections 3 and 4 report results obtained by applying the proposed model for matches of the EPL and
BFL, respectively. Section 5 concludes with some general remarks.

2. Model

Consider a football championship with n + 1 teams, in which, each team plays 2n times, being n
times at home stadium and n times at away stadium. The number of games of the championship is
N = n(n + 1). The N games are played in two phases, each phase with N/2 games. If in the first
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phase, a game between teams t and s occurs at home stadium of t team, then in the phase two the
game occurs at home stadium of s team. By each result, victory, draw and defeat each team gets 3, 1
and 0 points, respectively. After the N games, the team with the highest score is declared champion.
The M teams with smallest scores are relegated to the second division. In the EPL, M = 3, and in
BFL, M = 4.

For a game j between teams t and s, let Xt j and Xs j be random variables denoting the number of
goals of the home team and away team, respectively, for j = 1, . . . , n. Assume that,

Xt j ∼ Poisson(λt j) and Xs j ∼ Poisson(λs j). (2.1)

In order to link the number expected of goals of teams t and s with their strength of attack (a),
strength of defense (d) of the opposing team and the effect of being playing at home (h), we consider

λk j = eUk jβk , (2.2)

for j = 1, . . . , 2n, where k = t, s, Uk j = (1, 1, 1, 1) if the game is at home stadium of k team and
Uk j = (1, 1, 1, 0) otherwise, and βk = (βk0, βka, βkcd, βkh)′ is the vector of parameters of the k team,
where kc represents the opposing team. For example, if k = t, then kc = s. The parameter βka

measures the attack strength of the k team and parameter βkcd measures the defense strength of the
opposing team kc. The parameter βkh gives the advantage of playing at home, which we assume as
being equals for every team of the championship. Note that, in this formulation a team with a good
defense will have a negative defense effect because this will decrease the expected number of goals
of the opposing team. In the other hand, a team with positive defense effect increases the expected
number of goals of the opponent.

Suppose that a game j is played in (r + 1)th round of the championship, 1 ≤ r ≤ N. Let nr be the
number of games played by teams t and s before of the (r + 1)th round. Consider xk = (xk1, . . . , xknr )
be the number of goals scored by k team in the nr games, in which, xkm is number of goals scored
by the k team in the mth game, for k = t, s and m = 1, . . . , nr. Thus, the log-likelihood function for
(βt,βs) is given by

l(βt,βs; xt, xs) =
∑

k∈{t,s}

nr∑
m=1

(
−eUkmβk + xkmUkmβk − log(xkm!)

)
. (2.3)

Some constraints must be imposed on team-specific parameters to avoid nonidentifiability. Fol-
lowing Karlis and Ntzoufras (2003) and Baio and Blangiardo (2010), we use a sum-to-zero constraint,
i.e.,

n+1∑
t=1

βta = 0,
n+1∑
t=1

βtd = 0, and
n+1∑
t=1

βth = 0, (2.4)

i.e., the sum of the strength of the attack, defense and home effect of all (n+ 1) teams is equal to zero.
In order to develop the Bayesian approach we need to specify the prior distributions for parameters

βk, k = t, s. We assume that priors are a priori independent, i.e., π(βt,βs) = π(βt)π(βs), in which,
π(βk) = π(βk0)π(βka)π(βkd)π(βkh), for k = t, s. So, we consider the following prior distributions:
βk0 ∼ N(0, 10−4), βka ∼ N(0, 10−3), βkcd ∼ N(0, 10−3) and βkh ∼ N(0, 10−3), for k = t, s, where
N(0, b) denotes the normal distribution with mean 0 and precision b.

Joint posterior distributions for parameters do not have closed form; therefore, we estimate param-
eters βt and βs using MCMC. In Appendix A of the Supplementary Material (SM) we provide some
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details of the estimation procedure using MCMC. All computer implementations were performed
using OpenBUGS and R systems in the R2WinBUGS package. Estimates β̃t and β̃s are given by
the average of the generated MCMC sample. Given β̃t and β̃s, we use these values to calculate the
probability of a win, draw and defeat of each team in the next round.

2.1. Predictions

Consider that a game j between teams t and s will occurs at home stadium of team t in (r + 1)th round
of the championship. Denote the probability of win, draw and defeat (loss) of team t by Pw, Pd and
Pl, respectively. These probabilities are given by

Pw = P
(
Xt j > Xs j|β̃t, β̃s

)
=

∞∑
g=1

g−1∑
u=0

P
(
Xt j = g|β̃t

)
P

(
Xs j = u|β̃s

)
, (2.5)

Pd = P
(
Xt j = Xs j|β̃t, β̃s

)
=

∞∑
g=0

P
(
Xt j = g|β̃t

)
P

(
Xs j = g|β̃s

)
, (2.6)

Pl = P
(
Xt j < Xs j|β̃t, β̃s

)
=

∞∑
u=1

u−1∑
g=0

P
(
Xt j = g|β̃t

)
P

(
Xs j = u|β̃s

)
. (2.7)

Similarly to Bastos and da Rosa (2013) and Suzuki et al. (2010) we calculate the de Finetti
distance in order to measure the goodness of a prediction. This distance is given by the Euclidean
distance between the point corresponding to the real outcome and the corresponding to the prediction.
For this, is assumed that the set of all possible forecasts is given by the simplex set S = {(Pw, Pd, Pl) ∈
R

3 : Pw + Pd + Pl = 1, Pw ≥ 0, Pd ≥ 0, Pl ≥ 0} and that the possible real outcome, win, draw and
defeat are represented by the points (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.

The de Finetti measure (df) is defined as:

df = (Pw − b1)2 + (Pd − b2)2 + (Pl − b3)2,

where (b1, b2, b3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. For example, if the prediction for the game between
teams t and s is (0.2, 0.65, 0.15) and the real outcome is (0, 1, 0), i.e., a draw, then the de Finetti
distance is d f = (0.2 − 0)2 + (0.65 − 1)2 + (0.15 − 0)2 = 0.185.

For the equiprobable case, Pw = Pd = Pl = 1/3, with win of the home team, (1, 0, 0), the de
Finetti measure is given by d f = (1/3−1)2+ (1/3−0)2+ (1/3−0)2 = 2/3. This value is accepted as a
threshold value in order to classify the predictions as acceptable or not, see for example Suzuki et al.
(2010). If d f < 2/3, the predictions are considered acceptable; otherwise, d f > 2/3, the predictions
are considered poor.

Using a simulation procedure, we also calculate the probability of each team to be the champion.
In order to calculate these probabilities we assume that the first phase of the champion is ended, i.e.,
n(n + 1)/2 games were played. Let Tt be the number of points of the team t until the last game of the
first phase. The simulation procedure is given by the following steps:

(i) For the jth game of the second phase of the championship, j = (n(n + 1)/2) + 1, . . . ,N, do as
follows:

(a) Get the estimates (β̃t, β̃s) from Bayesian approach, where t and s represent the teams t and
s;
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(b) Given β̃k, generate the number of goals scored by k team, Xk j, from a Poisson distribution
with parameter λk j = eUk jβ̃k , for k = t, s;

(c) If Xt j > Xs j, do Tt = Tt + 3 and Ts = Ts; if Xt j = Xs j, do Tt = nT + 1 and Ts = Ts + 1; if
Xt j < Xs j, do Tt = Tt and Ts = Ts + 3;

(d) Ended the second phase, the A team is declared champion if TA = max1≤t≤nTt.

(ii) Repeat the step (i), r times, for r = 1, . . . ,R.

We consider R = 1,000. The probability of the team A be the champion is estimated by the
proportion of times that A team is declared champion among the R simulated cases, i.e.,

Pchamp(A) =
Nchamp

A

R
,

where Nchamp
A is the number of times that team A is the champion among the R simulated cases.

Similarly, the probability of team A be relegated to the second division is given by

Preleg(A) =
Nreleg

A

R
,

where Nreleg
A is the number of times that team A finished as one of the M teams with smaller number

of points among the R simulated cases. For EPL, M = 3, and for BFL, M = 4.

3. Application 1

In this section, we apply the proposed method to the 2012–2013 season of the EPL. EPL is composite
by n + 1 = 20 teams. The number of games of the EPL is 380, being 190 by phase.

Table 1 shows the number of games and the number of goals scored by each team at home and
away in each phase of the EPL. Table 1 is ordered according to team with highest to smallest number
of goals scored (last column). Manchester United has the highest number of goals scored, 86, being
45 scored at home and 41 away. Manchester United is also the team that has the highest number of
goals scored away. In its home stadium, Manchester United, only scored less goals than Arsenal.
Queens Park Rangers has the smallest number of goals scored, 30. This team, also has the smallest
number of goals scored at home. West Ham United has the smallest number of goals scored at away.

Table 2, shows the number of games ended with number of goals (xt, xs), where xt and xs are the
number of goals scored by home and away team, respectively. The sum of numbers of each column
of this Table 2, give the number of games in which the home team scored xt goals. For instance,
the sum of the second column is 120; meaning, that in 120 games the home team scored 1 goal.
Analogously, the sum of numbers of each line of Table 2, give the number of games in which the
away team scored xs goals. For instance, the sum of the fifth row is 15; meaning, that in 15 games
the away team scored four or more goals. The main diagonal give the amount of ties. The total of ties
is 109 (28.68%). The upper and lower diagonal give the number of games with win of the home and
away team, respectively. Adding values of upper diagonal, we get the number of games won by home
team, 166 (43.68%); while the sum of the values of the lower diagonal give the number of games won
by the away team, 105 (27.64%).
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Table 1: Number of games and goals scored by each team at home and away in each phase of the EPL

1st phase 2nd phase Number of goals
Team Games Goals Games Goals Games Goals Games Goals At home Away Totalat home away at home away

Manchester United 09 26 10 22 10 19 09 19 45 41 86
Chelsea 10 24 09 15 09 17 10 19 41 34 75
Arsenal 09 23 10 14 10 24 09 11 47 25 72

Liverpool 10 14 09 14 09 19 10 24 33 38 71
Manchester City 10 22 09 12 09 19 10 13 41 25 66

Tottenham Hotspur 10 14 09 20 09 15 10 17 29 37 66
Everton 09 16 10 16 10 17 09 08 33 22 55

West Bromwich Albion 10 16 09 12 09 16 10 09 32 21 53
Fulham 09 16 10 13 10 12 09 09 28 22 50

Southampton 10 14 09 11 09 12 10 12 26 23 49
Aston Villa 09 08 10 07 10 15 09 17 23 24 47

Swansea City 10 17 09 10 09 11 10 09 28 19 47
Wigan 10 14 09 06 09 12 10 15 26 21 47

Newcastle United 10 12 09 11 09 12 10 10 24 21 45
West Ham United 10 17 09 06 09 17 10 05 34 11 45

Reading 09 14 10 07 10 09 09 10 23 20 43
Norwich City 09 10 10 10 10 15 09 06 25 16 41
Sunderland 09 10 10 10 10 10 09 11 20 21 41
Stoke City 09 11 10 07 10 10 09 06 21 13 34

Queens Park Rangers 09 08 10 08 10 05 09 09 13 17 30

Table 2: Number of games ended with number of goals (xt, xs), for xt, xs ∈ {0, 1, 2, 3, 4+}

Away team Home team Total0 1 2 3 4+
0 35 41 18 12 10 116
1 20 42 41 18 10 131
2 13 27 27 09 05 81
3 10 10 11 04 02 37

4+ 06 00 05 03 01 15
Total 84 120 102 46 28 380

Table 3: Probabilities of win, draw and loss for each match of the 30th round

Home Away Probability Score de Finetti CorrectWin Draw Loss
Everton Manchester City 0.705 0.184 0.111 2–0 0.133 Yes

Manchester United Reading 0.682 0.175 0.143 1–0 0.152 Yes
Aston Villa Queens Park Rangers 0.612 0.202 0.186 3–2 0.227 Yes

Wigan Athletic Newcastle United 0.580 0.234 0.186 2–1 0.266 Yes
Stoke City West Bromwich Albion 0.498 0.255 0.247 0–0 0.863 No

Tottenham Hotspur Fulham 0.486 0.286 0.228 0–1 0.914 No
Southampton Liverpool 0.433 0.238 0.329 3–1 0.487 Yes

Chelsea West Ham United 0.430 0.253 0.318 2–0 0.490 Yes
Sunderland Norwich City 0.324 0.265 0.411 1–1 0.814 No

Swansea City Arsenal 0.319 0.277 0.404 0–2 0.535 Yes

3.1. Prediction for a round

In this section, we present the predictions for the 30th round of the EPL. Table 3 shows the probabilities
of win, draw and defeat for the 10 games. Table 3 also show the goals scored by each team (score),
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Figure 1: Attack and defense effect.

de Finetti measure and if the method correctly indicated the winner team as the team with higher
probability of a win. Table 3 is ordered from home team with highest to smallest probability of win.

The proportion of correct prediction was 70%. The teams with an estimated probability of win
higher than 0.5, were the actual winning team. If we consider the probability of home team does not
loss, i.e., probability of win or tie, then in 80% of games the method correctly indicates the home team
as not losing.

Figure 1 displays the graphic of attack versus defense effect. In this graphic, each dot (•) represent
the attack and defense effect of each team.

Manchester United and Liverpool have the highest effect attack; while Stoke City and West Ham
United have the smallest effect attack. The Manchester City has the best defense effect, i.e., the
smallest defense effect; decreasing the expected number of goals of the opposing team.. In opposite,
Reading has the worst defense effect, i.e., the highest defense effect, which increases the expected
number of goals of the opposing team.

Using a simulation procedure, we estimate the number of points, the number of wins, draw and
loss, number of goals for and against for each team. Table 4 presents these values and is organized
by the real number of points for each team. The last column in Table 4 show the difference between
number of goals for and against. Note that, the six teams with highest estimated number of points are
really the six best teams of the championship.
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Table 4: Predictions and real values

Team Points Won Drawn Lost Goals for Goals against Difference of goals
Est. real Est. real Est. real Est. real Est. real Est. real Est. real

Manchester United 92 89 29 28 05 05 04 05 88 86 39 43 49 43
Manchester City 74 78 22 23 08 09 08 06 64 66 39 34 25 32

Chelsea 71 75 20 22 11 09 07 07 75 75 41 39 34 36
Arsenal 71 73 20 21 11 10 07 07 68 66 36 37 32 35

Tottenham Hotspur 65 72 18 21 11 09 09 08 65 66 51 46 14 20
Everton 62 63 16 16 14 15 08 07 57 55 42 40 15 15

Liverpool 56 61 14 16 14 13 10 09 69 71 47 43 22 28
West Bromwich Albion 48 49 14 14 06 07 18 17 48 53 53 57 −05 −04

Swansea City 49 46 12 11 13 13 13 14 50 47 51 51 −01 −04
West Ham United 49 46 13 12 10 10 15 16 45 45 51 53 −06 −08

Norwich City 44 44 10 10 14 14 14 14 38 41 58 58 −20 −17
Fulham 42 43 10 11 12 10 16 17 49 50 61 60 −12 −10

Stoke City 42 42 09 09 15 15 14 14 35 34 46 45 −11 −11
Southampton 44 41 10 09 14 14 14 15 50 49 59 60 −09 −11
Aston Villa 44 41 11 10 11 11 16 17 46 47 66 69 −20 −22

Newcastle United 37 41 10 11 07 08 21 19 44 45 70 68 −26 −23
Sunderland 43 39 11 09 10 12 17 17 46 41 55 54 −09 −13

Wigan Athletic 35 36 09 09 08 09 21 20 43 47 67 73 −24 −26
Reading 32 28 07 06 11 10 20 22 48 43 70 73 −22 −30

Queens Park Rangers 30 25 05 04 15 13 18 21 31 30 57 60 −26 −30
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Manchester City

Chelsea

Arsenal

Tottenham

Everton

Liverpool

West Bromwich Albion

Swansea City

West Ham United

Norwich City

Fulham
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Figure 2: Box plot of number of points for R = 1,000 simulations.



Predicting football scores via Poisson regression model 305

Table 5: Probability to be the champion

Rounds Manchester United Manchester City Chelsea Arsenal Tottenham Hotspur Everton Liverpool
20–38 0.708 0.235 0.025 0.002 0.004 0.008 0.000
22–38 0.662 0.297 0.001 0.000 0.031 0.008 0.001
24–38 0.990 0.007 0.003 0.000 0.000 0.000 0.000
26–38 0.988 0.012 0.000 0.000 0.000 0.000 0.000
28–38 0.873 0.127 0.000 0.000 0.000 0.000 0.000
30–38 0.996 0.003 0.001 0.000 0.000 0.000 0.000
32–38 0.981 0.018 0.001 0.000 0.000 0.000 0.000
34–38 0.998 0.002 0.000 0.000 0.000 0.000 0.000
36–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6: Probability to classify for the UEFA Champions League

Rounds Manchester United Manchester City Chelsea Arsenal Tottenham Everton Liverpool
20–38 0.993 0.955 0.617 0.160 0.337 0.276 0.000
22–38 0.996 0.982 0.402 0.117 0.778 0.506 0.095
24–38 1.000 0.925 0.851 0.203 0.290 0.323 0.257
26–38 1.000 0.992 0.693 0.268 0.799 0.052 0.157
28–38 1.000 0.998 0.823 0.344 0.773 0.012 0.013
30–38 1.000 0.985 0.873 0.148 0.608 0.256 0.100
32–38 1.000 0.998 0.673 0.646 0.543 0.128 0.011
34–38 1.000 1.000 0.697 0.683 0.542 0.078 0.000
36–38 1.000 1.000 0.905 0.527 0.519 0.049 0.000

38 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Table 7: Probability of to be relegated to the second division

Round Stoke City Southampton Aston Villa Newcastle U. Sunderland Wigan A. Reading Queens P.R.
20–38 0.000 0.078 0.116 0.250 0.250 0.440 0.813 0.591
22–38 0.004 0.495 0.121 0.053 0.240 0.410 0.621 0.917
24–38 0.010 0.173 0.368 0.100 0.072 0.779 0.663 0.489
26–38 0.007 0.341 0.406 0.001 0.039 0.864 0.643 0.580
28–38 0.034 0.095 0.719 0.093 0.015 0.342 0.711 0.812
30–38 0.008 0.323 0.314 0.063 0.076 0.484 0.796 0.869
32–38 0.007 0.020 0.213 0.030 0.199 0.624 0.874 0.943
34–38 0.153 0.004 0.217 0.028 0.119 0.432 0.986 0.999
36–38 0.000 0.001 0.102 0.115 0.027 0.720 1.000 1.000

38 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000

Figure 2 shows box plot of the estimated points for the 20 teams from R = 1,000 simulations. As
we can note, the simulation results show Manchester United as champion.

3.2. Predictions for whole second phase

We apply the proposed method to predict results of the matches of rounds 20 to 38. Using a simulation
procedure, we calculated the probability of each team being the champion and to classify the Union
of European Football Associations (UEFA) champions league.

Tables 5–7 below show results for rounds 20, 22, 24, . . . , 38. Tables B.1–B.3 in Appendix B of
the SM show results for all rounds. Table 5 shows the rounds simulated and the probabilities to be
champion for the seven teams with the highest number of goals scored (Table 1). In all second phase
of the champion the method indicates Manchester United as the champion with a probability higher



306 Erlandson F. Saraiva, Adriano K. Suzuki, Ciro A. O. Filho, Francisco Louzada

Table 8: Number of games and goals scored by each team at home and away in each phase of the BFL

1st phase 2nd phase Number of goals
Team Games Goals Games Goals Games Goals Games Goals At home Away Totalat home away at home away

Corinthians 09 17 10 10 10 24 09 20 41 30 71
Atlético-MG 10 19 09 14 09 17 10 15 36 29 65

Palmeiras 10 19 09 13 09 12 10 16 31 29 60
Santos 09 16 10 09 10 31 09 03 47 12 59

São Paulo 10 16 09 09 09 19 10 09 35 18 53
Sport 10 18 09 13 09 15 10 07 33 20 53

Grêmio 10 21 09 08 09 14 10 09 35 17 52
Flamengo 09 12 10 09 10 16 09 08 28 17 45
Cruzeiro 09 08 10 07 10 20 09 09 28 16 44

Atlético Paranaense 10 14 09 09 09 16 10 04 30 13 43
Ponte Preta 09 09 10 12 10 13 09 07 22 19 41
Fluminense 10 12 09 10 09 13 10 05 25 15 40

Internacional 09 09 10 05 10 19 09 06 28 11 39
Goiás 09 08 10 08 10 14 09 09 22 17 39
Avaı́ 10 13 09 05 09 13 10 07 26 12 38

Figueirense 09 10 10 08 10 08 09 10 18 18 36
Chapecoense 10 14 09 03 09 09 10 08 23 11 34

Coritiba 09 08 10 05 10 07 09 11 15 16 31
Vasco da Gama 10 05 09 03 09 08 10 12 13 15 28

Joinvile 09 09 10 04 10 10 09 03 19 07 26

than 0.63. After the 28th round, the probability of Manchester United be the champion is higher than
0.99.

Table 6 shows the probabilities for the seven teams with highest number of goals to classify for the
UEFA Champions League. In all second phase, Manchester United has a probability to classify to the
UEFA Champions League that is higher than 0.99. After 28th round the probability of Manchester City
to classify is higher than 0.99. Six rounds before the ending of the champion, the method indicates
Manchester United and Manchester City as the two teams classified for the UEFA Champions League.

Table 7 shows the probabilities of the eight teams with smallest estimated number of points to
be relegated to the second division (Table 4). In the 35th round (four rounds before the end of the
championship), the method indicates these both teams as the teams relegated to the second division.

Figures C.1 and C.2 in Appendix C of the SM shows the attack effect and defense effect for the
best four teams of the EPL in the 20–38 rounds.

4. Application 2

In this section we apply the proposed method to the BFL. As EPL, the BFL it is also composed by
n + 1 = 20 teams. The games are played in two phases, in which each team plays 19 games by phase.
At the end of the 38 rounds, the team with highest number of points is champion; the four teams with
the highest number of points are classified to 2016 Copa Libertadores of América and the four teams
with the smallest points are relegated to the second division of the BFL.

Table 8 shows the number of games and the number of goals scored by each team at home and
away in each phase of the BFL. The two best team of BFL, Corinthians and Atlético-MG, have the
highest number of goals scored; being that the best team, Corinthians, has the highest number of goals
scored at home and away. The two worst teams of the BFL, Joinvile and Vasco, are the teams with
smallest number of goals scored. Joinvile has the smallest number of goals scored away, while Vasco
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Table 9: Number of games ended with number of goals (xt, xs), for xt, xs ∈ {0, 1, 2, 3,+4}

Away team Home team Total0 1 2 3 +4
0 39 56 35 28 4 162
1 27 33 43 15 10 128
2 16 21 16 5 3 61
3 5 11 4 3 1 24
+4 1 4 0 0 0 5

Total 88 125 98 51 18 380

Table 10: Probabilities of win, draw and loss for each match of the 27th round

Home Away Probability Score de Finetti CorrectWin Draw Loss
Palmeiras Grêmio 0.590 0.256 0.154 3–2 0.258 Yes

Internacional Figueirense 0.324 0.228 0.448 1–1 0.903 No
Ponte Preta Fluminense 0.499 0.233 0.268 3–1 0.377 Yes
Corinthians Santos 0.576 0.208 0.216 2–0 0.270 Yes

Goiás Joinvile 0.766 0.136 0.098 3–0 0.083 Yes
Vasco Sport 0.607 0.222 0.172 2–1 0.233 Yes

Atlético-MG Flamengo 0.573 0.226 0.201 4–1 0.273 Yes
Avaı́ São Paulo 0.337 0.332 0.331 2–1 0.659 Yes

Coritiba Atlético-PR 0.387 0.292 0.321 2–0 0.564 Yes
Chapecoense Cruzeiro 0.484 0.262 0.254 0–2 0.859 No

has the smallest number of goals scored at home.
Table 9 presents the number of games that end with the number of goals (xt, xs). In 52.63% of

the games the home team was the winner; in 23.42% the winner was the away team and in 23.95%
the game ended in a draw. The amount of victory of the home team is more than twice the amount of
victories for the away team. The two most frequent results was 1–0 (56 games) and 2–1 (43 games)
for the home team.

4.1. Prediction for a round

Here we present the predictions of the 27th round of the BFL. Table 10 presents the probabilities of
win, draw, goals scored, de Finetti measure and if the method indicates the winning team as the team
with higher probability of win. The percentage of correct predictions was 80%.

Figure 3 displays the graphic of attack versus defense effect. Palmeiras, Atlético-MG and Corinthi-
ans have the highest attack effect. Table 10 shows that these teams won their games. Chapecoense,
Internacional and Joinvile have the worst attack effect. Corinthians also presents the better defense
effect, while Vasco, Avaı́ and Figueirense have the worst defense effect.

Using the simulation procedure, we estimate the number of points for each team. Figure 4 shows
box plot of the estimated points for the 20 teams of the BFL from R = 1,000 simulations. As we can
note, the simulation results show Corinthians as the champion. Corinthians, Atlético-MG, Grêmio and
São Paulo as teams classified for 2016 Copa Libertadores of América; and Vasco, Joinvile, Figueirense
and Goiás as teams relegated to the second division. From real results, the method correctly indicates
the champion, the four teams classified for 2016 Copa Libertadores of América; and the three teams
relegated to the second division: Vasco, Joinvile and Goiás. The fourth team relegated to the second
division was Avaı́ and not Figueirense as foreseen by the method.
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Table 11: Probability to be the champion

Rounds Corinthians Atlético-MG Grêmio São Paulo Internacional Sport Recife Santos
20–38 0.572 0.047 0.065 0.125 0.000 0.008 0.000
22–38 0.176 0.204 0.185 0.007 0.031 0.028 0.002
24–38 0.692 0.086 0.194 0.020 0.000 0.006 0.000
26–38 0.579 0.380 0.025 0.010 0.000 0.000 0.002
28–38 0.945 0.035 0.007 0.002 0.000 0.002 0.001
30–38 0.728 0.230 0.012 0.020 0.000 0.000 0.007
32–38 0.940 0.058 0.002 0.000 0.000 0.000 0.000
34–38 0.999 0.001 0.000 0.000 0.000 0.000 0.000
36–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 12: Probability to classify for the 2016 Copa Libertadores of América

Rounds Corinthians Atlético-MG Grêmio São Paulo Internacional Sport Recife Santos
20–38 0.953 0.467 0.487 0.684 0.000 0.135 0.003
22–38 0.606 0.676 0.573 0.048 0.231 0.178 0.030
24–38 0.991 0.856 0.943 0.548 0.032 0.274 0.011
26–38 0.992 0.981 0.712 0.399 0.025 0.010 0.164
28–38 0.999 0.751 0.540 0.231 0.100 0.251 0.204
30–38 0.996 0.942 0.456 0.587 0.101 0.002 0.345
32–38 1.000 0.997 0.927 0.330 0.131 0.034 0.203
34–38 1.000 1.000 0.971 0.140 0.123 0.200 0.460
36–38 1.000 1.000 1.000 0.488 0.014 0.037 0.390

38 1.000 1.000 1.000 0.859 0.111 0.030 0.000

Table 13: Probability of to be relegated to the second division

Round Joinville Goiás Vasco da Gama Avaı́ Figueirense Coritiba
20–38 0.381 0.330 0.301 0.513 0.317 0.798
22–38 0.462 0.703 0.981 0.535 0.103 0.306
24–38 0.782 0.509 0.995 0.664 0.111 0.151
26–38 0.800 0.155 0.996 0.272 0.264 0.208
28–38 0.882 0.378 0.987 0.506 0.662 0.084
30–38 0.978 0.449 0.869 0.120 0.491 0.635
32–38 0.645 0.646 0.954 0.799 0.254 0.601
34–38 0.977 0.407 0.982 0.625 0.081 0.830
36–38 0.999 0.915 0.971 0.443 0.086 0.581

38 1.000 0.949 0.911 0.421 0.711 0.008

4.2. Predictions for whole second phase

In this section, we apply the proposed method to predict results of the matches of rounds 20 to 38.
Table 11 shows the rounds simulated and the probabilities to be champion for the seven teams with the
highest estimated number of points. After 31-round the method indicates Corinthians as the champion
with a probability higher than 0.93. The method indicates the Corinthians as the champion three
rounds before the ending.

Table 12 shows the probabilities for the seven teams with the highest estimated number of points
to classify for the 2016 Copa Libertadores of América. Eight rounds before the ending of the BFL,
the probability of the Corinthians and Atlético-MG to classify for the 2016 Copa Libertadores of
América is higher than 0.990. Three rounds before the ending of the champion, the method indicates
the Corinthians, Atlético-MG and Grêmio as teams classified 2016 Copa Libertadores of América. In
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the last round, the method indicates São Paulo as the fourth team classified with the probability 0.859.
Table 13 shows the probabilities of the six teams with smallest estimated number of points to

be relegated to the second division. Three rounds before the ending of the champion, the method
indicates the Joinvile, Goiás and Vasco as teams relegated to the second division with a probability
higher than 0.90. In the last round, the method indicates Avaı́ and Figueirense with probabilities 0.421
and 0.711 to be relegated. The Avaı́ was relegated.

Tables D.1–D.3 in Appendix D of the show results for all rounds. Figures E.1 and E.2 in Appendix
E of the SM show, respectively, the attack effect and defense effect for the best four teams and worst
four teams of the BFL in the 20–38 rounds.

5. Final remarks

In this paper, we develop a model to estimate the probabilities of win, tie and defeat in football games.
In order to calculate these probabilities we propose a Poisson regression model, in which, the average
of goals scored reflects the strength of attack of the team, the strength of defense of the opposing team
and the home team effect. Inferences on parameters of interest were done via Bayesian inference. The
accuracy of the forecasts were measured using the de Finetti measure.

In order to illustrate the application of the proposed method, we apply it to the 2012–2013 EPL
and to 2015 BFL. Using a simulation procedure, we calculated satisfactory results on the probability
of each team being the champion and classify the continental tournaments. The method correctly
indicated the champion of the EPL and BFL with three rounds before the ending of the championship.
The method also correctly indicates the teams classified for the continental tournaments.

We also present the probabilities of the teams to be relegated to the second division. Again, the
method presents satisfactorily results. The attack effect and defense effect for the best four teams and
worst four teams of the EPL and BFL in the 20–38 rounds were also presented. Results showed that
champions team have a higher attack effect and smaller defense effect. These two facts, increase in
the expected number of goals of the champion team and decrease the expected number of goals of an
opposing team, respectively.

Results obtained show that proposed method may be an effective alternative to predict football
outcomes. A practical differential of the proposed method is its simplicity to be implemented in
software like OpenBUGS and R.

We have developed a Poisson regression model based on the average of goals scored that reflect
the strength of attack and defense of the teams; in addition, the model can also describe the means
of goals scored using other covariates, such as, atmospheric condition, injuries, suspensions, tactical
scheme, and crisis. It can be seems as future work. Besides, the method can be easily used for the
analysis of the upcoming championship season and adapted to other championship and tournaments
with different forms of dispute.

All computational were performed using OpenBUGS and R systems via R2WinBUGS pack-
age. The computer programs are also available in the Supplementary Material at CSAM homepage
(http://csam.or.kr).
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Appendix

Here we provide some additional results and the computational codes developed to calculate the prob-
abilities presented in the manuscript.

Appendix A: Estimations of βs

In this appendix we present some details of the estimation procedure of parameters βk = (βk0, βka, βkd,
βkh), for k = t, s.

From model (2.1) of the manuscript, the likelihood function is given by

L(βt,βs|xt, xs) =
∏

k∈{t,s}

nr∏
m=1

exkmUkmβk e−eUkmβk

xkm!
. (A.1)

The log-likelihood function is given in equation (2.3) of the manuscript.
We assume that priors are a priori independent, i.e., π(βt,βs) = π(βt)π(βs), in which, π(βk) =

π(βk0)π(βka)π(βkd)π(βkh), for k = t, s. So, we consider the following prior distributions:

βk0 ∼ N
(
0, 10−4

)
, βka ∼ N

(
0, 10−3

)
, βkcd ∼ N

(
0, 10−3

)
and βkh ∼ N

(
0, 10−3

)
,

for k = t, s, where N(0, b) denotes the normal distribution with mean 0 and precision b.
Here, we present the joint posterior distribution for parameters βt. The joint posterior distribution

for βs is obtained in a similar way.
Updating the joint prior distribution for π(βt) via likelihood function in (A.1), the joint posterior

distribution is given by

π(βt |xt) ∝
 nr∏

m=1

extmUtmβt e−eUtmβt

 π(βt0)π(βta)π(βsd)π(βth). (A.2)

The conditional posterior distributions for βtw, w ∈ {0, a, d, h}, is given by

π(βtw|xt,βt \ βtw) ∝
 nr∏

m=1

extmUtmβt e−eUtmβt

 π(βtw),

where βt \ βtw denotes the vector βt excluding βtw.
As one can note, the conditional posterior distribution for βt0, βta, βsd and βth do not follow any

close distribution. For this case, the usual Bayesian procedure to generate random samples from
posterior distribution is to use the Metropolis-Hastings (MH) algorithm.

The Metropolis-Hastings algorithm together with the Gibbs sampling are the two most popular
examples of a Markov chain Monte Carlo (MCMC) method. This algorithm is used for sampling
from generic distributions if we do not know how to generate a random sample. Similar to acceptance-
rejection sampling, the MH algorithm considers that (to each iteration of the algorithm) a candidate
value can be generated from a proposal density; therefore, the candidate value is accepted according to
an adequated acceptance probability. This procedure guarantees the convergency of the Markov chain
for the target density. For more details on MH algorithm see Hastings (1970), Chib and Greenberg
(1995), Gelman et al. (1995) and Gilks et al. (1996).
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Table B.1: Probability to be the champion

Rounds Manchester United Manchester City Chelsea Arsenal Tottenham Hotspur Everton Liverpool
20–38 0.708 0.235 0.025 0.002 0.004 0.008 0.000
21–38 0.815 0.031 0.129 0.001 0.020 0.000 0.000
22–38 0.662 0.297 0.001 0.000 0.031 0.008 0.001
23–38 0.925 0.015 0.001 0.000 0.045 0.004 0.000
24–38 0.990 0.007 0.003 0.000 0.000 0.000 0.000
25–38 0.633 0.345 0.008 0.000 0.005 0.009 0.000
26–38 0.988 0.012 0.000 0.000 0.000 0.000 0.000
27–38 0.972 0.006 0.009 0.000 0.013 0.000 0.000
28–38 0.873 0.127 0.000 0.000 0.000 0.000 0.000
29–38 0.995 0.004 0.000 0.000 0.001 0.000 0.000
30–38 0.996 0.003 0.001 0.000 0.000 0.000 0.000
31–38 0.993 0.007 0.000 0.000 0.000 0.000 0.000
32–38 0.981 0.018 0.001 0.000 0.000 0.000 0.000
33–38 0.989 0.011 0.000 0.000 0.000 0.000 0.000
34–38 0.998 0.002 0.000 0.000 0.000 0.000 0.000
35–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000
36–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000
37–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

For example, to update parameter βth via MH algorithm, consider (βt0, βta, βsd, βth) be the current
state of the Markov chain. Let β∗th be a candidate value generated from a candidate generating-density
distribution q[β∗th|βth]. So, the value β∗th is accepted with probability Ψ(β∗th|βth) = min(1, Aβth ), where

Aβth =
L
(
βt0, βta, βsd, β

∗
th|xt

)
π
(
β∗th

)
L
(
βt0, βta, βsd, βth|xt

)
π
(
βth

) q
[
βth|β∗th

]
q
[
β∗th|βth

] (A.3)

and L(βt0, βta, βsd, βth|xt) ∝ [
∏nr

m=1 extmUtmβt e−eUtmβt ] is the likelihood function for βt.
In practical terms, the MH algorithm is implemented as follows.

Metropolis-Hastings algorithm: Let the current state of the Markov chain consist of (β(l)
t0 , β

(l)
ta , β

(l)
sd,

β(l−1)
th ), where l is lth iteration of the algorithm, for l = 1, . . . , L. So, update βth as follows:

(1) Generate β∗th ∼ q[β∗th|βth];

(2) Calculate Ψ(β∗th|βth) = min(1, Aβth ), where Aβth is given in (A.3);

(3) Generate u ∼ U(0, 1). If u ≤ Ψ(β∗th|βth) accept β∗th and do β(l)
th = β

∗
th. Otherwise, reject β∗th and do

β(l)
th = β

(l−1)
th .

The procedure to update βt0, βta and βsd is similar to described to parameter βth. We implement
the MH in order to generate random samples from posterior distribution in (A.2) using the WinBUGS
(Spiegelhalter et al., 2003) and R (R Development Core Team, 2012) softwares via R2WinBUGS
package Gelman et al. (2006). The computer programs are available in the Supplementary Material
at CSAM homepage (http://csam.or.kr).

Appendix B: Estimated probabilities for EPL

In this appendix we present the complete version of the Tables 5–7 showed in manuscript. Tables B.1
and B.2 show all rounds simulated, the probabilities to be champion and to classify for the continental
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Table B.2: Probability to classify for the UEFA Champions League

Rounds Manchester United Manchester City Chelsea Arsenal Tottenham Everton Liverpool
20–38 0.993 0.955 0.617 0.160 0.337 0.276 0.000
21–38 0.998 0.701 0.918 0.081 0.591 0.213 0.034
22–38 0.996 0.982 0.402 0.117 0.778 0.506 0.095
23–38 0.998 0.724 0.297 0.153 0.896 0.284 0.017
24–38 1.000 0.925 0.851 0.203 0.290 0.323 0.257
25–38 1.000 0.993 0.528 0.046 0.547 0.552 0.297
26–38 1.000 0.992 0.693 0.268 0.799 0.052 0.157
27–38 1.000 0.848 0.880 0.189 0.905 0.076 0.009
28–38 1.000 0.998 0.823 0.344 0.773 0.012 0.013
29–38 1.000 0.995 0.802 0.033 0.776 0.159 0.214
30–38 1.000 0.985 0.873 0.148 0.608 0.256 0.100
31–31 1.000 0.975 0.927 0.170 0.774 0.079 0.069
32–38 1.000 0.998 0.673 0.646 0.543 0.128 0.011
33–38 1.000 1.000 0.965 0.332 0.655 0.037 0.011
34–38 1.000 1.000 0.697 0.683 0.542 0.078 0.000
35–38 1.000 1.000 0.810 0.737 0.425 0.028 0.000
36–38 1.000 1.000 0.905 0.527 0.519 0.049 0.000
37–38 1.000 1.000 0.961 0.775 0.264 0.000 0.000

38 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Table B.3: Probability of to be relegated to the second division

Round Stoke City Southampton Aston Villa Newcastle United Sunderland Wigan Athletic Reading Queens P.R.
20–38 0.000 0.078 0.116 0.250 0.250 0.440 0.813 0.591
21–38 0.006 0.308 0.042 0.262 0.294 0.073 0.863 0.754
22–38 0.004 0.495 0.121 0.053 0.240 0.410 0.621 0.917
23–38 0.068 0.015 0.386 0.597 0.121 0.214 0.976 0.162
24–38 0.010 0.173 0.368 0.100 0.072 0.779 0.663 0.489
25–38 0.005 0.345 0.456 0.387 0.084 0.495 0.178 0.846
26–38 0.007 0.341 0.406 0.001 0.039 0.864 0.643 0.580
27–38 0.000 0.076 0.165 0.666 0.180 0.339 0.484 0.855
28–38 0.034 0.095 0.719 0.093 0.015 0.342 0.711 0.812
29–38 0.011 0.216 0.867 0.147 0.016 0.338 0.570 0.751
30–38 0.008 0.323 0.314 0.063 0.076 0.484 0.796 0.869
31–38 0.021 0.201 0.252 0.018 0.127 0.439 0.923 0.968
32–38 0.007 0.020 0.213 0.030 0.199 0.624 0.874 0.943
33–38 0.070 0.003 0.250 0.010 0.291 0.373 0.985 0.975
34–38 0.153 0.004 0.217 0.028 0.119 0.432 0.986 0.999
35–38 0.014 0.003 0.290 0.040 0.072 0.554 1.000 1.000
36–38 0.000 0.001 0.102 0.115 0.027 0.720 1.000 1.000
37–38 0.000 0.005 0.004 0.131 0.024 0.620 1.000 1.000

38 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000

championship for the seven teams with the highest number of goals scored. Table B.3 shows all
rounds simulated and the probabilities of the eight teams with smallest estimated number of points to
be relegated to the second division.

Appendix C: Attack and defense effect for EPL

In this appendix we present the attack and defense effect for the best four teams and worst four teams
of the EPL and BFL in the 20–38 rounds.

Figure C.1 shows the attack effect and defense effect for the best four teams of the EPL in the
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Figure C.1: Attack and defense effect of the best four teams in rounds 20–38.

20–38 rounds. These four teams present positive attack. Manchester City, Chelsea and Arsenal have
negative defense affect in the 20–38 rounds. The positive attack increases the expected number of
goals of the teams and the negative defense attack decrease the expected number of goals of the
opposing team.

In opposite, the two worst team of the EPL, Queens Park Rangers and Reading have negative
attack effect and positive defense attack, as showed in Figure C.2. This Figure C.2 also show the
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Figure C.2: Attack and defense effect of the worst four teams in rounds 20–38.

attack and defense effect for Wigan Athletic and Sunderland.

Appendix D: Estimated probabilities for BFL

In this appendix we present the complete version of the Tables 11–13 showed in manuscript. Ta-
bles D.1 and D.2 show all rounds simulated, the probabilities to be champion and to classify for the
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Table D.1: Probability to be the champion

Rounds simulated Corinthians Atlético-MG Grêmio São Paulo Internacional Sport Recife Santos
20–38 0.572 0.047 0.065 0.125 0.000 0.008 0.000
21–38 0.343 0.298 0.214 0.073 0.000 0.010 0.030
22–38 0.176 0.204 0.185 0.007 0.031 0.028 0.002
23–38 0.465 0.199 0.290 0.016 0.000 0.001 0.015
24–38 0.692 0.086 0.194 0.020 0.000 0.006 0.000
25–38 0.386 0.388 0.099 0.002 0.016 0.000 0.000
26–38 0.579 0.380 0.025 0.010 0.000 0.000 0.002
27–38 0.430 0.505 0.048 0.002 0.005 0.002 0.004
28–38 0.945 0.035 0.007 0.002 0.000 0.002 0.001
29–38 0.953 0.040 0.007 0.000 0.000 0.000 0.000
30–38 0.728 0.230 0.012 0.020 0.000 0.000 0.007
31–38 0.439 0.394 0.166 0.000 0.000 0.000 0.000
32–38 0.940 0.058 0.002 0.000 0.000 0.000 0.000
33–38 0.953 0.047 0.000 0.000 0.000 0.000 0.000
34–38 0.999 0.001 0.000 0.000 0.000 0.000 0.000
35–38 0.999 0.001 0.000 0.000 0.000 0.000 0.000
36–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000
37–38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

38 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Table D.2: Probability to classify for the 2016 Copa Libertadores of América

Rounds simulated Corinthians Atlético-MG Grêmio São Paulo Internacional Sport Recife Santos
20–38 0.953 0.467 0.487 0.684 0.000 0.135 0.003
21–38 0.865 0.821 0.765 0.441 0.001 0.206 0.359
22–38 0.606 0.676 0.573 0.048 0.231 0.178 0.030
23–38 0.951 0.875 0.884 0.272 0.039 0.054 0.296
24–38 0.991 0.856 0.943 0.548 0.032 0.274 0.011
25–38 0.936 0.926 0.683 0.117 0.299 0.008 0.008
26–38 0.992 0.981 0.712 0.399 0.025 0.010 0.164
27–38 0.983 0.981 0.709 0.156 0.255 0.114 0.322
28–38 0.999 0.751 0.540 0.231 0.100 0.251 0.204
29–38 1.000 0.969 0.894 0.105 0.011 0.067 0.237
30–38 0.996 0.942 0.456 0.587 0.101 0.002 0.345
31–38 0.999 0.999 0.990 0.173 0.029 0.045 0.296
32–38 1.000 0.997 0.927 0.330 0.131 0.034 0.203
33–38 1.000 0.999 0.873 0.097 0.184 0.417 0.396
34–38 1.000 1.000 0.971 0.140 0.123 0.200 0.460
35–38 1.000 1.000 0.962 0.213 0.064 0.183 0.547
36–38 1.000 1.000 1.000 0.488 0.014 0.037 0.390
37–38 1.000 1.000 1.000 0.314 0.367 0.008 0.281

38 1.000 1.000 1.000 0.859 0.111 0.030 0.000

continental championship for the seven teams with the highest number of goals scored. Table D.3
shows the probabilities of the six teams with smallest estimated number of points to be relegated to
the second division.

Appendix E: Attack and defense effect for BFL

In this appendix we present the attack and defense effect for the best four and worst four teams of the
BFL in the 20–38 rounds.

Figures E.1 and E.2 show, respectively, the attack effect and defense effect for the best four teams
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Table D.3: Probability of to be relegated to the second division

Round simulated Joinville Goiás Vasco da Gama Avaı́ Figueirense Coritiba
20–38 0.381 0.330 0.301 0.513 0.317 0.798
21–38 0.923 0.528 0.983 0.053 0.628 0.217
22–38 0.462 0.703 0.981 0.535 0.103 0.306
23–38 0.842 0.262 0.910 0.629 0.369 0.416
24–38 0.782 0.509 0.995 0.664 0.111 0.151
25–38 0.701 0.152 0.728 0.536 0.174 0.553
26–38 0.800 0.155 0.996 0.272 0.264 0.208
27–38 0.940 0.337 0.948 0.419 0.802 0.155
28–38 0.882 0.378 0.987 0.506 0.662 0.084
29–38 0.600 0.726 0.917 0.547 0.618 0.124
30–38 0.978 0.449 0.869 0.120 0.491 0.635
31–38 0.904 0.565 0.944 0.274 0.509 0.441
32–38 0.645 0.646 0.954 0.799 0.254 0.601
33–38 0.859 0.762 0.942 0.317 0.505 0.431
34–38 0.977 0.407 0.982 0.625 0.081 0.830
35–38 0.909 0.626 0.856 0.701 0.169 0.739
36–38 0.999 0.915 0.971 0.443 0.086 0.581
37–38 1.000 0.953 0.864 0.651 0.246 0.286

38 1.000 0.949 0.911 0.421 0.711 0.008
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Figure E.1: Attack and defense effect of the best four teams in rounds 20–38.
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Figure E.2: Attack and defense effect of the worst four teams in rounds 20–38.

and worst four teams of the BFL in the 20–38 rounds. Corinthians and Atlético-MG have the highest
attack effect. Corinthians also have the best defense effect. After 32-round Corinthians is the team
with the best attack and defense effect. The four worst teams of BFL have an attack effect, meaning
a low expected number of goals and few amount of victories that regulates these teams to the second
division.
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