DOI QR코드

DOI QR Code

Assessment of Global Air Quality Reanalysis and Its Impact as Chemical Boundary Conditions for a Local PM Modeling System

전지구 대기질 재분석 자료의 평가와 국지규모 미세먼지 예보모델에 미치는 영향

  • Lee, Kangyeol (Division of Earth Environment System, Pusan National University) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University) ;
  • Kim, EunJi (Department of Earth Science, Pusan National University)
  • 이강열 (부산대학교 대기환경과학과) ;
  • 이순환 (부산대학교 지구과학교육과) ;
  • 김은지 (부산대학교 지구과학과)
  • Received : 2016.06.21
  • Accepted : 2016.07.04
  • Published : 2016.07.31

Abstract

The initial and boundary conditions are important factors in regional chemical transport modeling systems. The method of generating the chemical boundary conditions for regional air quality models tends to be different from the dynamically varying boundary conditions in global chemical transport models. In this study, the impact of real time Copernicus atmosphere monitoring service (CAMS) re-analysis data from the modeling atmospheric composition and climate project interim implementation (MACC) on the regional air quality in the Korean Peninsula was carried out using the community multi-scale air quality modeling system (CMAQ). A comparison between conventional global data and CAMS for numerical assessments was also conducted. Although the horizontal resolution of the CAMS re-analysis data is not higher than the conventionally provided data, the simulated particulate matter (PM) concentrations with boundary conditions for CAMS re-analysis is more reasonable than any other data, and the estimation accuracy over the entire Korean peninsula, including the Seoul and Daegu metropolitan areas, was improved. Although an inland area such as the Daegu metropolitan area often has large uncertainty in PM prediction, the level of improvement in the prediction for the Daegu metropolitan area is higher than in the coastal area of the western part of the Korean peninsula.

Keywords

References

  1. Berge, E., Ho-Chun, H., Julius, C., Tsun-Hsien, L., 2000, A study of the importance of initial conditions for photochemical oxidant modelling, J. Geophys. Res., 106(D1), 1347-1364. https://doi.org/10.1029/2000JD900227
  2. Byun, D. W., Schere, K. L., 2006, Review of the governing equations, computational algorithms, and other components of the models 3 community multiscale air quality (CMAQ) modeling system, Appl. Mech. Rev., 59(2), 51-77. https://doi.org/10.1115/1.2128636
  3. Carter, W. P. L., 2000, Documentation of the SAPRC 99 chemical mechanism for VOC reactivity assessment, Final Report to the California Air Resources Board, Contracts No. 92 329 and No. 95 308.
  4. Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., Kloster, S., 2010, Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67. https://doi.org/10.5194/gmd-3-43-2010
  5. Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, R., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. G., Thompson, A., van Aardenne, J., van der Werf, G. R., van Vuuren, D. P., 2011, Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980 2010 period, Clim. Change, 109, 163-190. https://doi.org/10.1007/s10584-011-0154-1
  6. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C., 2006, Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature), Atmos. Chem. Phys., 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  7. Hanna, S. R., Lu, Z., Frey, H. C., Wheeler, N., Vukovich, J., Arunachalam, S., Fernau, M., Hansen, D. A., 2001, Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmos. Environ., 35, 891-903. https://doi.org/10.1016/S1352-2310(00)00367-8
  8. Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., Brasseur, G. P., 2003, A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784.
  9. Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., van der Werf, G. R., 2012, Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554.
  10. Kim, D. Y., 2013, Causes and measures of fine dust that threaten the health, Gyeonggi Research Institute Issue & Anal., 121.
  11. Kim, J. S., Jung, D. I., Hong, J. H., Kim, J. Y., Ban, S. J., Park, S. N., Lee, Y. M., Choi, E. G., 2006, Development of modeling input system for air quality assessment in Seoul metropolitan areas, National Institute of Environ. Res.
  12. Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., Simmons, A. J., 2007, Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 Chemical Transport Model, J. Geophys. Res., 112, D03303.
  13. Lin, J. T., Wuebbles, D. J., Liang, X. Z., 2008, Effects of interconti-nental transport on surface ozone over the United States: Present and future assessment with a global model, Geophys. Res. Lett., 35, L02805.
  14. Martien, P. T., Harley, R. A., Gauci, D. G., 2006, Adjoint sensitivity analysis for a three-dimensional photochemical model: Implementation and method comparison, Environ. Sci. & Tech., 40(8), 2663-2670. https://doi.org/10.1021/es0510257
  15. Napelenok, S. L., Cohan, D. S., Hu, Y., Russell, A. G., 2006, Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM), Atmos. Environ., 40, 6112-6121. https://doi.org/10.1016/j.atmosenv.2006.05.039
  16. Pfister, G., Emmons, L. K., Hess, P. G., Lamarque, J. F., Walters, S., Guenther, A., Palmer, P. I., Lawrence, P., 2008, Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4, J. Geophys. Res., 113, D05308.
  17. Price, C., Rind, D., 1992, What determines the cloud-to-ground fraction of lightning in thunderstorms, Geophys. Res. Lett., 20, 463-466.
  18. Price, C., Penner, J., Prather, M., 1997, NOx from lightning 1. global distribution based on lightning physics, J. Geophys. Res., 102, 5929-5941. https://doi.org/10.1029/96JD03504
  19. Seinfeld, J. H., Pandis, S. N., 1997, Atmospheric chemistry and physics: From air pollution to climate change, Wiley-Interscience, New York, 1203-1239.
  20. Umeda, T., Martien, P. T., 2002, Evaluation of a data assmilation technique for a mesoscale meteorological model used for air quality modeling, J. Appl. Meteor., 41, 12-29. https://doi.org/10.1175/1520-0450(2002)041<0012:EOADAT>2.0.CO;2
  21. Yamaji, K., Uno, I., Irie, H., 2012, Investigating the response of East Asian ozone to Chinese emission changes using a linear approach, Atmos. Environ., 55, 475-482. https://doi.org/10.1016/j.atmosenv.2012.03.009
  22. Wesely, M. L., 1989, Parameterization of surface resistance to gaseous dry deposition in regional numerical models, Atmos. Environ., 16, 1293-1304.
  23. Zhang, Q., Streets, D. G., Carmicheal, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., Yao, Z. L., 2009, Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. and Phys., 9, 5131-5153. https://doi.org/10.5194/acp-9-5131-2009