DOI QR코드

DOI QR Code

Image Retrieval System of semantic Inference using Objects in Images

이미지의 객체에 대한 의미 추론 이미지 검색 시스템

  • 김지원 (호남대학교 컴퓨터공학과) ;
  • 김철원 (호남대학교 컴퓨터공학과)
  • Received : 2016.06.13
  • Accepted : 2016.07.24
  • Published : 2016.07.31

Abstract

With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.

이미지와 같은 멀티미디어 정보들의 증가로 저수준의 시각 정보에서 고수준의 의미 정보를 추출하는 방법에 대한 연구가 이루어지고 있으며, 이러한 정보를 자동으로 생성하는 다양한 기술들이 연구되고 있다. 일반적으로 이미지 검색에 있어서 색상과 모양 등의 유사도를 이용하여 검색하는 경우가 많다. 색상과 모양이 비슷하다고 하여 의미까지 같은 이미지를 검색하기에는 어려움이 있다. 본 논문에서는 이미지에서 객체를 인식하기 위해 중간 계층 기술값을 이용하여 중간 계층의 의미 값으로 변환하며, 세그멘테이션의 성능을 높이기 위해 K-means알고리즘을 이용하여 각각의 이미지에 적합한 K값을 구하는 방법을 제안한다. 이렇게 세그멘테이션을 이용한 저수준 특징을 이용하여 객체를 추출하고, 온톨로지를 이용하여 의미관계를 추론한다. 제안하는 방법은 사용자가 생각하는 의미적으로 유사한 이미지를 보다 효율적으로 검색할 수 있다.

Keywords

References

  1. M. Lew, N. Sebe, C. Djeraba, and R. Jain, "Content-based Multimedia Information Retrieval: State of the Art and Challenges," ACM Trans. Multimedia Computing, Communications, and Applications, vol. 2, no. 1, Feb. 2006, pp. 1-19. https://doi.org/10.1145/1126004.1126005
  2. C. Carson, M. Thomas, S. Belongie, J. Hellerstein, and J. M. Malik, "Blobworld: A System for Region-Based Image Indexing and Retrieval," Third Int. Conf. on Visual Information Systems, Berlin Heidelberg, June, 1999.
  3. D. Yining, and B. Manjunath, "An Efficient Low-Dimensional Color Indexing Scheme for Region-Based Image Retrieval," Proc. of IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Arizona, U.S.A. March, 1999, pp. 3017-3020.
  4. E. Hyyoenen, A. Styrman, and S. Saarela, "Ontology-based Image Retrieval," Internet Technology And Secured Transactions, 2012 International Conf., London, Dec. 2012, pp. 288-293.
  5. J. Shuqiang, H. Tiejun, and G. Wen "An Ontology based Approach to Retrieval Digitized Art Images," IEEE/WIC/ACM Int. Conf. on Web Intelligence (WI'04), Beijing, China, Sept. 2004, pp. 131-137
  6. V. Mezaris, I. Kompatsiaris, and M. G. Strintzis, "Region-based Image Retrieval using an Object Ontology and Relevance Feedback," Eurasip J. on applied signal processing, vol. 2004, no. 1, Jan. 2004, pp. 886-901. https://doi.org/10.1155/S1110865704401188
  7. S.H. Kim, Y. G. Kim W.J. Kim, "The Design of Method for Efficient Processing of Small Files in the Distributed System based on Hadoop Framework," J. of the Korea Institgrte of Electronic Communication Sciences, vol. 10. no. 10,2015, pp.1115-1121. https://doi.org/10.13067/JKIECS.2015.10.10.1115
  8. D.J. Chai, K.Ban and E.K. Kim, "Schema Mapping Method using Frequent Pattern Mining," J. of the Korea Institute of Electronic Communication Sciences, vol. 5. no. 1, 2010, pp.93-101
  9. B.H. Kim, "Words Recommendation Algorithm for Similarity Connection based on Data Transmutability," J. of the Korea Institute of Electronic Communication Sciences, vol. 8. no. 11, 2013, pp.1719-1724 https://doi.org/10.13067/JKIECS.2013.8.11.1719
  10. Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, "A survey of content-based image retrieval with high-level semantics," Pattern Recognition, vol. 40, no. 1, Jan. 2007, pp. 262-282. https://doi.org/10.1016/j.patcog.2006.04.045
  11. G. Pass, R. Zabih, and J. Miller, "Comparing images using color coherence vectors," In Proc. ACM Int. Conf. Multimedia, Boston, USA, February, 1996.
  12. J. Smith, "Integrated Spatial and Feature Image Systems: Retrieval Analysis and Compression," Ph.D's Thesis, Graduate School of Arts and Sciences, Columbia University, 1997.
  13. M. Tico, T. Haverinen, and P. Kuosmanen, "A Method of Color Histogram Creation for Image Retrieval," Proc. Nordic Signal Processing Symp. (NORSIG'2000), Kolmarden, Sweden. June 2000, pp. 157-160.
  14. S. Sural, G. Qian, and S. Pramanik, "Segmentation and Histogram Generation using The HSV Color Space for Image Retrieval," IEEE Int. Conf. on Image Processing, vol. 2, Sept. 2002, pp. II-589-II-592.
  15. R. Sray, "Content-based image retrieval: Color and edges," Technical Report, Department of Computer Science technical report, Dartmouth University, Oct, 1995.
  16. J. Fan and D. Yau, "Automatic Image segmentation by Integrating Color-Edge Extraction and Seeded Region Growing," IEEE Trans. Image Processing, vol. 10, no. 10, 2001, pp. 1454-1466. https://doi.org/10.1109/83.951532
  17. L. Bonsiepen and W. Coy, "Stable Segmentation Using Color Information," Computer Analysis of Images and Patterns, ed. R. Klette, Proc. of CAIP 91, Sept 1991, pp. 7-84.
  18. S. Aijjatoleslami and J. Kittler, "Region Growing: A New Approach," IEEE Trans. Processing, vol. 7, no. 7, 1998, pp. 1079-1084. https://doi.org/10.1109/83.701170
  19. A. Popescu, C. Millet, and P.-A. Moellic "Ontology driven content based image retrieval," ACM Int. Conf. on Image and Video Retrieval, Amsterdam, Netherlands, July 2007, pp. 387-394.