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CERTAIN SEMISYMMETRY PROPERTIES OF

(κ, µ)-CONTACT METRIC MANIFOLDS

Uday Chand De, Jae-Bok Jun, and Srimayee Samui

Abstract. The object of the present paper is to characterize (κ, µ)-
contact metric manifolds whose concircular curvature tensor satisfies cer-
tain semisymmetry conditions. We also verify that the result holds by a
concrete example.

1. Introduction

In [3], Blair, Koufogiorgos and Papantoniou introduced (κ, µ)-contact metric
manifolds. A class of contact metric manifolds with contact metric structure
(ϕ, ξ, η, g) in which the curvature tensor R satisfies the condition

R(X,Y )ξ = (κI + µh){η(Y )X − η(X)Y }

for all X and Y ∈ TM , where (κ, µ) ∈ R
2 is called (κ, µ)-metric manifolds.

A transformation of an (2n+1)-dimensional Riemannian manifold M , which
transforms every geodesic circle ofM into a geodesic circle is called a concircular
transformation ([8], [12]). Here geodesic circle means a curve in M whose
first curvature is constant and whose second curvature is identically zero. A
concircular transformation is always a conformal transformation [8].

Concircular curvature tensor is defined by [12]

(1.1) Z(X,Y )W = R(X,Y )W −
r

2n(2n+ 1)
{g(Y,W )X − g(X,W )Y },

where X,Y,W ∈ TM and R and r is the curvature tensor and the scalar
curvature respectively.

Riemannian manifolds with vanishing concircular curvature tensor are of
constant curvature. Thus the concircular curvature tensor is a measure of the
failure of a Riemannian manifold to be of constant curvature.
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In [2], D. E. Blair et al. started a study of concircular curvature tensor of
contact metric manifolds. Also concircular curvature tensor in (κ, µ)-contact
metric manifolds has been studied by U. C. De and Sujit Ghosh [6].

A Riemannian manifold is said to be semisymmetric if its curvature tensor
R satisfies R(X,Y ) · R = 0, X,Y ∈ TM , where R(X,Y ) acts on R.

Recently, in [13] Yildiz and De studied ϕ-projectively semisymmetric and
h-projectively semisymmetric (κ, µ)-contact metric manifolds.

Motivated by the above studies, we study in this paper certain semisym-
metry properties of the concircular curvature tensor in (κ, µ)-contact metric
manifolds.

The paper is organized as follows:
In Section 2, we give necessary details about (κ, µ)-contact metric mani-

folds. Section 3 deals with ϕ-concircularly semisymmetric (κ, µ)-contact metric
manifolds. In Section 4, h-concircularly semisymmetric (κ, µ)-contact metric
manifolds have been studied. Finally, we construct an example of a (κ, µ)-
contact metric manifold which verifies Theorem 5.1.

2. Preliminaries

An (2n+1)-dimensional differentiable manifoldM is called an almost contact
manifold if there is an almost contact structure (ϕ, ξ, η) consisting of a (1, 1)-
tensor field ϕ, a vector field ξ, a 1-form η satisfying

(2.1) ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

An almost contact structure is said to be normal if the induced almost
complex structure J on the product manifoldM2n+1×R defined by J(X, f d

dt ) =

(φX − fξ, η(X) d
dt) is integrable, where X is tangent to M , t is the coordinate

of R and f is a smooth function on M2n+1 × R.
The condition for being normal is equivalent to vanishing of the torsion

tensor [ϕ, ϕ] + 2dη ⊗ ξ, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ.
Let g be a compatible Riemannian metric with structure (ϕ,ξ,η), that is,

(2.2) g(X,Y ) = g(ϕX,ϕY ) + η(X)η(Y ),

or equivalently,

(2.3) g(X, ξ) = η(X), g(ϕX, Y ) = −g(X,ϕY )

for all X,Y ∈ TM .
An almost contact metric structure becomes a contact metric structure if

(2.4) g(X,ϕY ) = dη(X,Y )

for all X,Y ∈ TM .
Given a contact metric manifold M2n+1(ϕ, ξ, η, g), we define a (1, 1)-tensor

field h by h = 1
2Lξϕ, where L denotes the Lie differentiation. Then h is

symmetric and satisfies

(2.5) hξ = 0, hϕ+ ϕh = 0,
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(2.6) ∇ξ = −ϕ− ϕh, trace(h) = trace(ϕh) = 0,

where ∇ is the Levi-Civita connection.
A contact metric manifold is said to be an η-Einstein manifold if

(2.7) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions on M and S is the Ricci tensor.
A normal contact metric manifold is called a Sasakian manifold. An almost

contact metric manifold is Sasakian if and only if

(2.8) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

On a Sasakian manifold, the following relation holds

(2.9) R(X,Y )ξ = η(Y )X − η(X)Y

for all X,Y ∈ TM .
Blair, Koufogiorgos and Papantoniou [3] considered the (κ, µ)-nullity con-

dition and gave several reasons for studying it. The (κ, µ)-nullity distribution
N(κ, µ) ([3], [10]) of a contact metric manifold M is defined by

N(κ, µ) : p 7→ Np(κ, µ).

Here Np(κ, µ) = [W ∈ TpM | R(X,Y )W = (κI + µh)(g(Y,W )X − g(X,W )Y )]
for all X,Y ∈ TM , where (κ, µ) ∈ R

2.
A contact metric manifold M2n+1 with ξ ∈ N(κ, µ) is called a (κ, µ)-contact

metric manifold. Then we have

R(X,Y )ξ = κ[η(Y )X − η(X)Y ](2.10)

+ µ[η(Y )hX − η(X)hY ] for all X,Y ∈ TM.

For (κ, µ)-metric manifolds, it follows that h2 = (κ − 1)ϕ2. This class
contains Sasakian manifolds for κ = 1 and h = 0. In fact, for a (κ, µ)-metric
manifold, the condition of being Sasakian manifold, κ-contact manifold, κ = 1
and h = 0 are equivalent. If µ = 0, then the (κ, µ)-nullity distribution N(κ, µ)
is reduced to κ-nullity distribution N(κ) [11]. If ξ ∈ N(κ), then we call contact
metric manifold M an N(κ)-contact metric manifold.

(κ, µ)-contact metric manifolds have been studied by several authors ([1],
[4], [5], [6], [7], [9]) and many other authors.

In a (κ, µ)-contact metric manifold, the following relations hold [3]:

(2.11) h2 = (κ− 1)ϕ2,

(2.12) (∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.13) R(ξ,X)Y = κ{g(X,Y )ξ − η(Y )X}+ µ{g(hX, Y )ξ − η(Y )hX},

(2.14) S(X, ξ) = 2nκη(X),

S(X,Y ) = {(2n− 2)− nµ}g(X,Y ) + {(2n− 2) + µ}g(hX, Y )(2.15)

+ {(2− 2n) + n+ (2κ+ µ)}η(X)η(Y ),
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(2.16) r = 2n
(
2n− 2 + κ− nµ

)
,

S(X,hY ) = {(2n− 2)− nµ}g(X,hY )(2.17)

− (κ− 1){(2n− 2) + µ}g(X,Y )

+ (κ− 1){(2n− 2) + µ}η(X)η(Y ),

(2.18) Qϕ− ϕQ = 2{(2n− 2) + µ}hϕ,

where Q is the Ricci operator defined by g(QX, Y ) = S(X,Y ).
From [3] we can state the following results:

Lemma 2.1. Let M be an (2n+ 1)-dimensional contact metric manifold with

ξ belonging to the (κ, µ)-nullity distribution. Then we have

R(X,Y )ϕW − ϕR(X,Y )W(2.19)

= {(1− κ)[g(ϕY,W )η(X)− g(ϕX,W )η(Y )]

+ (1− µ)[g(ϕhY,W )η(X)− g(ϕhX,W )η(Y )]}ξ

− g(Y + hY,W )(ϕX + ϕhX) + g(X + hX,W )(ϕY + ϕhY )

− g(ϕY + ϕhY,W )(X + hX) + g(ϕX + ϕhX,W )(Y + hY )

− η(W ){(1− κ)[η(X)ϕY − η(Y )ϕX ]

+ (1− µ)[η(X)ϕhY − η(Y )ϕhX ]}

for any vector fields X,Y,W .

Lemma 2.2. Let M be an (2n+ 1)-dimensional contact metric manifold with

ξ belonging to the (κ, µ)-nullity distribution. Then we have

R(X,Y )hW − hR(X,Y )W(2.20)

= {κ[g(hY,W )η(X)− g(hX,W )η(Y )]

+ µ(1− κ)[g(X,W )η(Y )− g(Y,W )η(X)]}ξ

+ κ{g(Y, ϕW )ϕhX − g(X,ϕW )ϕhY

+ g(W,ϕhY )ϕX − g(W,ϕhX)ϕY

+ η(W )[η(X)hY − η(Y )hX ]}

− µ{η(Y )[(1− κ)η(W )X + µη(X)hW ]

− η(X)[(1− κ)η(W )Y + µη(Y )hW ] + 2g(X,ϕY )ϕhW}

for any vector fields X,Y,W .

3. η-Einstein (κ, µ)-contact metric manifolds

In general, in a (κ, µ)-contact metric manifold, the Ricci operator Q does
not commute with ϕ. However, Yildiz and De [13] proved the following:
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Proposition 3.1. In a non-Sasakian (κ, µ)-contact metric manifold, the fol-

lowing conditions are equivalent:
(a) η-Einstein manifold,

(b) Qϕ = ϕQ.

For n = 1, from (2.18) and Proposition 3.1 we can state the following:

Corollary 3.1. A 3-dimensional non-Sasakian η-Einstein (κ, µ)-contact met-

ric manifold is an N(κ)-contact metric manifold.

4. ϕ-concircularly semisymmetric (κ, µ)-contact metric manifolds

Definition 4.1. A (κ, µ)-contact metric manifold is said to be ϕ-concircularly
semisymmetric if Z(X,Y ) · ϕ = 0 for all X,Y ∈ TM .

SupposeM be an (2n+1)-dimensional ϕ-concircularly semisymmetric (κ, µ)-
contact metric manifold. Then we get

(4.1) Z(X,Y )ϕW − ϕ(Z(X,Y )W ) = 0.

Using (1.1) and (2.19) in (4.1) we have

{(1− κ)[g(ϕY,W )η(X)− g(ϕX,W )η(Y )](4.2)

+(1− µ)[g(ϕhY,W )η(X)− g(ϕhX,W )η(Y )]}ξ

−g(Y + hY,W )(ϕX + ϕhX) + g(X + hX,W )(ϕY + ϕhY )

−g(ϕY + ϕhY,W )(X + hX) + g(ϕX + ϕhX,W )(Y + hY )

−η(W ){(1− κ)[η(X)ϕY − η(Y )ϕX ] + (1− µ)[η(X)ϕhY − η(Y )ϕhX ]}

−
r

2n(2n+ 1)
[g(Y, ϕW )X − g(X,ϕW )Y − g(Y,W )ϕX + g(X,W )ϕY ]

= 0.

Taking inner product with Z of (4.2) and contracting Y, Z we obtain

(4.3) g(ϕX,W ){κ−3−
r(2n− 1)

2n(2n+ 1)
+(2n+1)}+g(ϕX, hW )(2−µ−2n) = 0.

Putting X = ϕX and using (2.1) we have

(4.4) g(X,hW ) = ag(X,W ) + bη(X)η(W ),

where

a = −
κ− 3− r(2n−1)

2n(2n+1) + (2n+ 1)

2− µ− 2n

and

b =
κ− 3− r(2n−1)

2n(2n+1) + (2n+ 1)

2− µ− 2n
.

Putting (4.4) in (2.15) we have

(4.5) S(X,W ) = a1g(X,W ) + b1η(X)η(W ),
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where

a1 = {(2n− 2)− nµ} − {(2n− 2) + µ}
κ− 3− r(2n−1)

2n(2n+1) + (2n+ 1)

2− µ− 2n

and

b1 = {(2− 2n) + n(2κ+ µ)}+ {(2n− 2) + µ}
κ− 3− r(2n−1)

2n(2n+1) + (2n+ 1)

2− µ− 2n
.

From (4.5) we can conclude the following:

Theorem 4.1. An (2n+1)-dimensional ϕ-concircularly semisymmetric (κ, µ)-
contact metric manifold reduces to an η-Einstein manifold.

From Proposition 3.1 and Theorem 4.1 we can state that:

Corollary 4.1. Let M be an (2n + 1)-dimensional ϕ-concircularly semisym-

metric (κ, µ)-contact metric manifold. Then the Ricci operator Q commutes

with ϕ. That is, Qϕ = ϕQ.

5. 3-dimensional ϕ-concircularly semisymmetric (κ, µ)-contact

metric manifolds

Suppose M is a 3-dimensional ϕ-concircularly semisymmetric (κ, µ)-contact
metric manifold.

Putting n = 1 in equation (4.3) we have

(5.1) g(ϕX,W )(κ−
r

6
) + g(ϕX, hW )µ = 0.

Substituting W = hW in (5.1) we obtain

(5.2) (κ−
r

6
)hW + µh2W = 0.

Applying trace in both side of the equation (5.2) and using traceh = 0, we
get

(5.3) µ = 0.

From (5.3) we can state the following:

Theorem 5.1. A 3-dimensional ϕ-concircularly semisymmetric (κ, µ)-contact
metric manifold reduces to an N(κ)-contact metric manifold.

6. h-concircularly semisymmetric (κ, µ)-contact metric manifolds

Definition 6.1. A (κ, µ)-contact metric manifold is said to be h-concircularly
semisymmetric if Z(X,Y ) · h = 0 for all X,Y ∈ TM .
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Suppose M is an (2n+1)-dimensional h-concircularly semisymmetric (κ, µ)-
contact metric manifold. Then we get

(6.1) Z(X,Y )hW − h(Z(X,Y )W ) = 0.

Using (1.1) and (2.20) in (6.1) we have

{κ[g(hY,W )η(X)− g(hX,W )η(Y )](6.2)

+µ(1− κ)[g(X,W )η(Y )− g(Y,W )η(X)]}ξ

+κ{g(Y, ϕW )ϕhX − g(X,ϕW )ϕhY

+g(W,ϕhY )ϕX − g(W,ϕhX)ϕY + η(W )[η(X)hY − η(Y )hX ]}

−µ{η(Y )[(1− κ)η(W )X + µη(X)hW ]

−η(X)[(1− κ)η(W )Y + µη(Y )hW ] + 2g(X,ϕY )ϕhW}

−
r

2n(2n+ 1)
[g(Y, hW )X − g(X,hW )Y − g(Y,W )hX + g(X,W )hY ]

= 0.

Taking inner product with Z of (6.2) and contracting Y, Z we obtain

{κ+ 2µ+
r

2n
}g(hW,X) + µ(κ− 1)g(X,W )(6.3)

−(2n+ 1)µ(κ− 1)η(X)η(W ) = 0,

which implies that

(6.4) g(X,hW ) = ag(X,W ) + bη(X)η(W ),

where

a = −
µ(κ− 1)

κ+ 2µ+ r
2n

and

b =
(2n+ 1)µ(κ− 1)

κ+ 2µ+ r
2n

.

Putting (6.4) in (2.15) we have

(6.5) S(X,W ) = a1g(X,W ) + b1η(X)η(W ),

where

a1 = {(2n− 2)− nµ} − {(2n− 2) + µ}
µ(κ− 1)

κ+ 2µ+ r
2n

and

b1 = {(2− 2n) + n(2κ+ µ)
}
+ {(2n− 2) + µ}

(2n+ 1)(κ− 1)µ

κ+ 2µ+ r
2n

.

From (6.5) we can conclude the following:

Theorem 6.1. An (2n+1)-dimensional h-concircularly semisymmetric (κ, µ)-
contact metric manifold is an η-Einstein manifold.

From Proposition 3.1 and Theorem 6.1 we can state that:



1244 U. C. DE, J.-B. JUN, AND S. SAMUI

Corollary 6.1. Let M be an (2n + 1)-dimensional h-concircularly semisym-

metric (κ, µ)-contact metric manifold. Then the Ricci operator Q commutes

with ϕ. That is, Qϕ = ϕQ.

7. An example

Let us consider a 3-dimensional manifold M = {(x, y, z) ∈ R
3 : (x, y, z) 6=

(0, 0, 0)}, where (x, y, z) are the standard coordinates in R
3. The vector fields

e1 = ez−x ∂
∂x , e2 = ez−y ∂

∂y , e3 = ∂
∂z are linearly independent at each point of

M . Let g be the metric defined by

(7.1) g(ei, ej) =

{

1 for i = j,

0 for i 6= j.

Here i and j runs from 1 to 3.
Let η be the 1-form defined by η(Z) = g(Z, e1) for any vector field Z tangent

to M . Let ϕ be the (1, 1)-tensor field defined by ϕe2 = −e3, ϕe3 = e2, ϕe1 =
0. From the properties of ϕ and η we can state the following: g(ei, ϕej) =
dη(ei, ej), where i and j runs from 1 to 3. Using the linearity property of ϕ
and g we have

η(e1) = 1,

ϕ2Z = −Z + η(Z)e1

g(ϕZ,ϕW ) = g(Z,W )− η(Z)η(W )

for any vector field Z,W .
Then for e1 = ξ, the structure (ϕ, ξ, η, g) defines a contact metric structure

on M .
Let ∇ be the Levi-Civita connection on M with respect to the metric g.

Then we have

[e1, e2] = ez−x ∂

∂x
(ez−y ∂

∂y
)− ez−y ∂

∂y
(ez−x ∂

∂x
)

= ez−xez−y ∂2

∂x∂y
− ez−xez−y ∂2

∂x∂y

= 0.

Similarly,

[e1, e3] = −e1, [e2, e3] = −e2, [e2, e1] = 0,

[e3, e1] = e1, [e3, e2] = e2.

From Koszul’s formula, the Riemannian connection ∇ of the metric g is
given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )(7.2)

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).
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Using (7.2) we have

∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

We also know that

∇e2e1 = −ϕe2 − ϕhe2.

Comparing the above two relations for ∇e2e1 and using ϕe1 = 0, ϕe3 = e2 and
ϕe2 = −e3, we have

he2 = −e2.

Similarly, we obtain

he3 = −e3 and he1 = 0.

It is known that Riemannian curvature tensor

(7.3) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Using (7.3) we obtain

R(e2, e1)e1 = −e2,

R(e3, e1)e1 = −e3,

R(e2, e3)e1 = 0.

We conclude that e1 belongs to the (κ,µ)-nullity distribution, where κ =
−1, µ = 0. Hence the manifold reduces to an N(κ)-contact metric manifold.

All nonzero components of the curvature tensor can be written as follows:

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1,

R(e2, e3)e3 = −e2, R(e2, e3)e2 = e3,

R(e1, e3)e3 = −e1, R(e3, e1)e1 = −e3, R(e2, e1)e1 = −e2.

From the above results, we have the Ricci tensor

S(e1, e1) = g(R(e2, e1)e1, e2) + g(R(e3, e1)e1, e3)

= −2.

Similarly, we obtain S(e2, e2) = −2, S(e3, e3) = −2 and the scalar curvature
r = S(e1, e1) + S(e2, e2) + S(e3, e3 = −6.

From the above calculation we can conclude that S(X,Y ) = −2g(X,Y ) for
X = a1e1 + a2e2 + a3e3 and Y = b1e1 + b2e2 + b3e3.

For 3-dimensional (κ, µ)-contact metric manifolds, Riemannian curvature
tensor can be written as follows:

R(X,Y )W = [S(Y,W )X − S(X,W )Y + g(X,W )QX − g(X,W )QY ](7.4)

−
r

2
[g(Y,W )X − g(X,W )Y ].

Using the values of Ricci tensors and the scalar curvature we obtain

(7.5) R(X,Y )W = −[g(Y,W )X − g(X,W )Y ].
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From the definition of ϕ-concircularly semisymmetric manifold we obtain

(Z(X,Y ) · ϕ)W = Z(X,Y )ϕW − ϕZ(X,Y )W(7.6)

= R(X,Y )ϕW − ϕR(X,Y )W

−
r

6
[g(Y, ϕW )X − g(X,ϕW )Y

− g(Y,W )ϕX + g(X,W )ϕY ].

Using (7.5) and the value of Ricci tensor, (7.6) yields

(Z(X,Y ) · ϕ)W = − [g(Y, ϕW )X − g(X,ϕW )Y ](7.7)

+ [g(Y,W )ϕX − g(X,W )ϕY ]

+ [g(Y, ϕW )X − g(X,ϕW )Y

− g(Y,W )ϕX + g(X,W )ϕY ]

= 0.

Thus Theorem 5.1 is verified.
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