Bull. Korean Math. Soc. 53 (2016), No. 4, pp. 1237-1247

http://dx.doi.org/10.4134/BKMS.b150638 pISSN: 1015-8634 / eISSN: 2234-3016

CERTAIN SEMISYMMETRY PROPERTIES OF (κ, μ) -CONTACT METRIC MANIFOLDS

UDAY CHAND DE, JAE-BOK JUN, AND SRIMAYEE SAMUI

ABSTRACT. The object of the present paper is to characterize (κ, μ) -contact metric manifolds whose concircular curvature tensor satisfies certain semisymmetry conditions. We also verify that the result holds by a concrete example.

1. Introduction

In [3], Blair, Koufogiorgos and Papantoniou introduced (κ, μ) -contact metric manifolds. A class of contact metric manifolds with contact metric structure (φ, ξ, η, g) in which the curvature tensor R satisfies the condition

$$R(X,Y)\xi = (\kappa I + \mu h)\{\eta(Y)X - \eta(X)Y\}$$

for all X and $Y \in TM$, where $(\kappa, \mu) \in \mathbb{R}^2$ is called (κ, μ) -metric manifolds.

A transformation of an (2n+1)-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle is called a concircular transformation ([8], [12]). Here geodesic circle means a curve in M whose first curvature is constant and whose second curvature is identically zero. A concircular transformation is always a conformal transformation [8].

Concircular curvature tensor is defined by [12]

$$(1.1) Z(X,Y)W = R(X,Y)W - \frac{r}{2n(2n+1)} \{g(Y,W)X - g(X,W)Y\},$$

where $X, Y, W \in TM$ and R and r is the curvature tensor and the scalar curvature respectively.

Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature. Thus the concircular curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

Received August 10, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53C15,\ 53C25.$

Key words and phrases. (κ, μ) -contact metric manifolds, $N(\kappa)$ -contact metric manifolds, concircular curvature tensor, η -Einstein manifolds.

The second author was partially supported by Kookmin University 2015.

In [2], D. E. Blair et al. started a study of concircular curvature tensor of contact metric manifolds. Also concircular curvature tensor in (κ, μ) -contact metric manifolds has been studied by U. C. De and Sujit Ghosh [6].

A Riemannian manifold is said to be semisymmetric if its curvature tensor R satisfies $R(X,Y) \cdot R = 0$, $X,Y \in TM$, where R(X,Y) acts on R.

Recently, in [13] Yildiz and De studied φ -projectively semisymmetric and h-projectively semisymmetric (κ , μ)-contact metric manifolds.

Motivated by the above studies, we study in this paper certain semisymmetry properties of the concircular curvature tensor in (κ, μ) -contact metric manifolds.

The paper is organized as follows:

In Section 2, we give necessary details about (κ, μ) -contact metric manifolds. Section 3 deals with φ -concircularly semisymmetric (κ, μ) -contact metric manifolds. In Section 4, h-concircularly semisymmetric (κ, μ) -contact metric manifolds have been studied. Finally, we construct an example of a (κ, μ) -contact metric manifold which verifies Theorem 5.1.

2. Preliminaries

An (2n+1)-dimensional differentiable manifold M is called an almost contact manifold if there is an almost contact structure (φ, ξ, η) consisting of a (1,1)-tensor field φ , a vector field ξ , a 1-form η satisfying

(2.1)
$$\varphi^{2}(X) = -X + \eta(X)\xi, \ \eta(\xi) = 1, \ \varphi \xi = 0, \ \eta \circ \varphi = 0.$$

An almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbb{R}$ defined by $J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$ is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth function on $M^{2n+1} \times \mathbb{R}$.

The condition for being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi] + 2d\eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ .

Let g be a compatible Riemannian metric with structure (φ, ξ, η) , that is,

(2.2)
$$g(X,Y) = g(\varphi X, \varphi Y) + \eta(X)\eta(Y),$$

or equivalently,

(2.3)
$$g(X,\xi) = \eta(X), \ g(\varphi X, Y) = -g(X, \varphi Y)$$

for all $X, Y \in TM$.

An almost contact metric structure becomes a contact metric structure if

$$(2.4) g(X, \varphi Y) = d\eta(X, Y)$$

for all $X, Y \in TM$.

Given a contact metric manifold $M^{2n+1}(\varphi, \xi, \eta, g)$, we define a (1,1)-tensor field h by $h = \frac{1}{2}L_{\xi}\varphi$, where L denotes the Lie differentiation. Then h is symmetric and satisfies

$$(2.5) h\xi = 0, \ h\varphi + \varphi h = 0,$$

(2.6)
$$\nabla \xi = -\varphi - \varphi h, \ trace(h) = trace(\varphi h) = 0,$$

where ∇ is the Levi-Civita connection.

A contact metric manifold is said to be an η -Einstein manifold if

$$(2.7) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a, b are smooth functions on M and S is the Ricci tensor.

A normal contact metric manifold is called a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

(2.8)
$$(\nabla_X \varphi) Y = g(X, Y) \xi - \eta(Y) X.$$

On a Sasakian manifold, the following relation holds

$$(2.9) R(X,Y)\xi = \eta(Y)X - \eta(X)Y$$

for all $X, Y \in TM$.

Blair, Koufogiorgos and Papantoniou [3] considered the (κ, μ) -nullity condition and gave several reasons for studying it. The (κ, μ) -nullity distribution $N(\kappa, \mu)$ ([3], [10]) of a contact metric manifold M is defined by

$$N(\kappa,\mu): p \mapsto N_p(\kappa,\mu).$$

Here $N_p(\kappa, \mu) = [W \in T_pM \mid R(X, Y)W = (\kappa I + \mu h)(g(Y, W)X - g(X, W)Y)]$ for all $X, Y \in TM$, where $(\kappa, \mu) \in \mathbb{R}^2$.

A contact metric manifold M^{2n+1} with $\xi \in N(\kappa, \mu)$ is called a (κ, μ) -contact metric manifold. Then we have

(2.10)
$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY] \text{ for all } X, Y \in TM.$$

For (κ, μ) -metric manifolds, it follows that $h^2 = (\kappa - 1)\varphi^2$. This class contains Sasakian manifolds for $\kappa = 1$ and h = 0. In fact, for a (κ, μ) -metric manifold, the condition of being Sasakian manifold, κ -contact manifold, $\kappa = 1$ and h = 0 are equivalent. If $\mu = 0$, then the (κ, μ) -nullity distribution $N(\kappa, \mu)$ is reduced to κ -nullity distribution $N(\kappa)$ [11]. If $\xi \in N(\kappa)$, then we call contact metric manifold M an $N(\kappa)$ -contact metric manifold.

 (κ, μ) -contact metric manifolds have been studied by several authors ([1], [4], [5], [6], [7], [9]) and many other authors.

In a (κ, μ) -contact metric manifold, the following relations hold [3]:

$$(2.11) h^2 = (\kappa - 1)\varphi^2,$$

$$(2.12) \qquad (\nabla_X \varphi) Y = g(X + hX, Y) \xi - \eta(Y)(X + hX),$$

(2.13)
$$R(\xi, X)Y = \kappa \{g(X, Y)\xi - \eta(Y)X\} + \mu \{g(hX, Y)\xi - \eta(Y)hX\},$$

$$(2.14) S(X,\xi) = 2n\kappa\eta(X),$$

(2.15)
$$S(X,Y) = \{(2n-2) - n\mu\}g(X,Y) + \{(2n-2) + \mu\}g(hX,Y) + \{(2-2n) + n + (2\kappa + \mu)\}\eta(X)\eta(Y),$$

$$(2.16) r = 2n(2n - 2 + \kappa - n\mu),$$

(2.17)
$$S(X, hY) = \{(2n-2) - n\mu\}g(X, hY) - (\kappa - 1)\{(2n-2) + \mu\}g(X, Y) + (\kappa - 1)\{(2n-2) + \mu\}\eta(X)\eta(Y),$$

$$(2.18) Q\varphi - \varphi Q = 2\{(2n-2) + \mu\}h\varphi,$$

where Q is the Ricci operator defined by g(QX,Y) = S(X,Y). From [3] we can state the following results:

Lemma 2.1. Let M be an (2n+1)-dimensional contact metric manifold with ξ belonging to the (κ, μ) -nullity distribution. Then we have

$$(2.19) \qquad R(X,Y)\varphi W - \varphi R(X,Y)W$$

$$= \{(1-\kappa)[g(\varphi Y,W)\eta(X) - g(\varphi X,W)\eta(Y)] + (1-\mu)[g(\varphi hY,W)\eta(X) - g(\varphi hX,W)\eta(Y)]\}\xi$$

$$-g(Y+hY,W)(\varphi X + \varphi hX) + g(X+hX,W)(\varphi Y + \varphi hY)$$

$$-g(\varphi Y + \varphi hY,W)(X+hX) + g(\varphi X + \varphi hX,W)(Y+hY)$$

$$-\eta(W)\{(1-\kappa)[\eta(X)\varphi Y - \eta(Y)\varphi X] + (1-\mu)[\eta(X)\varphi hY - \eta(Y)\varphi hX]\}$$

for any vector fields X, Y, W.

Lemma 2.2. Let M be an (2n+1)-dimensional contact metric manifold with ξ belonging to the (κ, μ) -nullity distribution. Then we have

$$(2.20) \qquad R(X,Y)hW - hR(X,Y)W$$

$$= \{\kappa[g(hY,W)\eta(X) - g(hX,W)\eta(Y)] + \mu(1-\kappa)[g(X,W)\eta(Y) - g(Y,W)\eta(X)]\}\xi$$

$$+ \kappa\{g(Y,\varphi W)\varphi hX - g(X,\varphi W)\varphi hY$$

$$+ g(W,\varphi hY)\varphi X - g(W,\varphi hX)\varphi Y$$

$$+ \eta(W)[\eta(X)hY - \eta(Y)hX]\}$$

$$- \mu\{\eta(Y)[(1-\kappa)\eta(W)X + \mu\eta(X)hW]$$

$$- \eta(X)[(1-\kappa)\eta(W)Y + \mu\eta(Y)hW] + 2g(X,\varphi Y)\varphi hW\}$$

for any vector fields X, Y, W.

3. η -Einstein (κ, μ) -contact metric manifolds

In general, in a (κ, μ) -contact metric manifold, the Ricci operator Q does not commute with φ . However, Yildiz and De [13] proved the following:

Proposition 3.1. In a non-Sasakian (κ, μ) -contact metric manifold, the following conditions are equivalent:

- (a) η -Einstein manifold,
- (b) $Q\varphi = \varphi Q$.

For n = 1, from (2.18) and Proposition 3.1 we can state the following:

Corollary 3.1. A 3-dimensional non-Sasakian η -Einstein (κ, μ) -contact metric manifold is an $N(\kappa)$ -contact metric manifold.

4. φ -concircularly semisymmetric (κ, μ) -contact metric manifolds

Definition 4.1. A (κ, μ) -contact metric manifold is said to be φ -concircularly semisymmetric if $Z(X,Y)\cdot \varphi=0$ for all $X,Y\in TM$.

Suppose M be an (2n+1)-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifold. Then we get

(4.1)
$$Z(X,Y)\varphi W - \varphi(Z(X,Y)W) = 0.$$

Using (1.1) and (2.19) in (4.1) we have

$$(4.2) \ \left\{ (1-\kappa)[g(\varphi Y,W)\eta(X) - g(\varphi X,W)\eta(Y)] \right. \\ \left. + (1-\mu)[g(\varphi hY,W)\eta(X) - g(\varphi hX,W)\eta(Y)] \right\} \xi \\ \left. - g(Y+hY,W)(\varphi X+\varphi hX) + g(X+hX,W)(\varphi Y+\varphi hY) \right. \\ \left. - g(\varphi Y+\varphi hY,W)(X+hX) + g(\varphi X+\varphi hX,W)(Y+hY) \right. \\ \left. - \eta(W) \left\{ (1-\kappa)[\eta(X)\varphi Y - \eta(Y)\varphi X] + (1-\mu)[\eta(X)\varphi hY - \eta(Y)\varphi hX] \right\} \right. \\ \left. - \frac{r}{2n(2n+1)} [g(Y,\varphi W)X - g(X,\varphi W)Y - g(Y,W)\varphi X + g(X,W)\varphi Y] \right.$$

Taking inner product with Z of (4.2) and contracting Y, Z we obtain

$$(4.3) \ g(\varphi X, W)\{\kappa - 3 - \frac{r(2n-1)}{2n(2n+1)} + (2n+1)\} + g(\varphi X, hW)(2 - \mu - 2n) = 0.$$

Putting $X = \varphi X$ and using (2.1) we have

$$(4.4) g(X, hW) = ag(X, W) + b\eta(X)\eta(W),$$

where

$$a = -\frac{\kappa - 3 - \frac{r(2n-1)}{2n(2n+1)} + (2n+1)}{2 - \mu - 2n}$$

and

$$b = \frac{\kappa - 3 - \frac{r(2n-1)}{2n(2n+1)} + (2n+1)}{2 - \mu - 2n}.$$

Putting (4.4) in (2.15) we have

(4.5)
$$S(X,W) = a_1 g(X,W) + b_1 \eta(X) \eta(W),$$

where

$$a_1 = \{(2n-2) - n\mu\} - \{(2n-2) + \mu\} \frac{\kappa - 3 - \frac{r(2n-1)}{2n(2n+1)} + (2n+1)}{2 - \mu - 2n}$$

and

$$b_1 = \{(2-2n) + n(2\kappa + \mu)\} + \{(2n-2) + \mu\} \frac{\kappa - 3 - \frac{r(2n-1)}{2n(2n+1)} + (2n+1)}{2 - \mu - 2n}.$$

From (4.5) we can conclude the following:

Theorem 4.1. An (2n+1)-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifold reduces to an η -Einstein manifold.

From Proposition 3.1 and Theorem 4.1 we can state that:

Corollary 4.1. Let M be an (2n+1)-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifold. Then the Ricci operator Q commutes with φ . That is, $Q\varphi = \varphi Q$.

5. 3-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifolds

Suppose M is a 3-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifold.

Putting n = 1 in equation (4.3) we have

(5.1)
$$g(\varphi X, W)(\kappa - \frac{r}{6}) + g(\varphi X, hW)\mu = 0.$$

Substituting W = hW in (5.1) we obtain

(5.2)
$$(\kappa - \frac{r}{6})hW + \mu h^2 W = 0.$$

Applying trace in both side of the equation (5.2) and using traceh = 0, we get

$$\mu = 0.$$

From (5.3) we can state the following:

Theorem 5.1. A 3-dimensional φ -concircularly semisymmetric (κ, μ) -contact metric manifold reduces to an $N(\kappa)$ -contact metric manifold.

6. h-concircularly semisymmetric (κ, μ) -contact metric manifolds

Definition 6.1. A (κ, μ) -contact metric manifold is said to be h-concircularly semisymmetric if $Z(X,Y) \cdot h = 0$ for all $X,Y \in TM$.

Suppose M is an (2n+1)-dimensional h-concircularly semisymmetric (κ, μ) -contact metric manifold. Then we get

(6.1)
$$Z(X,Y)hW - h(Z(X,Y)W) = 0.$$

Using (1.1) and (2.20) in (6.1) we have

(6.2)
$$\{\kappa[g(hY,W)\eta(X) - g(hX,W)\eta(Y)]$$

$$+\mu(1-\kappa)[g(X,W)\eta(Y) - g(Y,W)\eta(X)]\}\xi$$

$$+\kappa\{g(Y,\varphi W)\varphi hX - g(X,\varphi W)\varphi hY$$

$$+g(W,\varphi hY)\varphi X - g(W,\varphi hX)\varphi Y + \eta(W)[\eta(X)hY - \eta(Y)hX]\}$$

$$-\mu\{\eta(Y)[(1-\kappa)\eta(W)X + \mu\eta(X)hW]$$

$$-\eta(X)[(1-\kappa)\eta(W)Y + \mu\eta(Y)hW] + 2g(X,\varphi Y)\varphi hW\}$$

$$-\frac{r}{2n(2n+1)}[g(Y,hW)X - g(X,hW)Y - g(Y,W)hX + g(X,W)hY]$$

$$= 0$$

Taking inner product with Z of (6.2) and contracting Y, Z we obtain

(6.3)
$$\{\kappa + 2\mu + \frac{r}{2n}\}g(hW, X) + \mu(\kappa - 1)g(X, W)$$
$$-(2n+1)\mu(\kappa - 1)\eta(X)\eta(W) = 0,$$

which implies that

(6.4)
$$g(X, hW) = ag(X, W) + b\eta(X)\eta(W),$$

where

$$a = -\frac{\mu(\kappa - 1)}{\kappa + 2\mu + \frac{r}{2n}}$$

and

$$b = \frac{(2n+1)\mu(\kappa-1)}{\kappa + 2\mu + \frac{r}{2n}}.$$

Putting (6.4) in (2.15) we have

(6.5)
$$S(X,W) = a_1 g(X,W) + b_1 \eta(X) \eta(W),$$

where

$$a_1 = \{(2n-2) - n\mu\} - \{(2n-2) + \mu\} \frac{\mu(\kappa-1)}{\kappa + 2\mu + \frac{r}{2n}}$$

and

$$b_1 = \{(2-2n) + n(2\kappa + \mu)\} + \{(2n-2) + \mu\} \frac{(2n+1)(\kappa - 1)\mu}{\kappa + 2\mu + \frac{r}{2n}}.$$

From (6.5) we can conclude the following:

Theorem 6.1. An (2n+1)-dimensional h-concircularly semisymmetric (κ, μ) -contact metric manifold is an η -Einstein manifold.

From Proposition 3.1 and Theorem 6.1 we can state that:

Corollary 6.1. Let M be an (2n+1)-dimensional h-concircularly semisymmetric (κ, μ) -contact metric manifold. Then the Ricci operator Q commutes with φ . That is, $Q\varphi = \varphi Q$.

7. An example

Let us consider a 3-dimensional manifold $M=\{(x,y,z)\in\mathbb{R}^3:(x,y,z)\neq (0,0,0)\}$, where (x,y,z) are the standard coordinates in \mathbb{R}^3 . The vector fields $e_1=e^{z-x}\frac{\partial}{\partial x},\ e_2=e^{z-y}\frac{\partial}{\partial y},\ e_3=\frac{\partial}{\partial z}$ are linearly independent at each point of M. Let g be the metric defined by

(7.1)
$$g(e_i, e_j) = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

Here i and j runs from 1 to 3.

Let η be the 1-form defined by $\eta(Z)=g(Z,e_1)$ for any vector field Z tangent to M. Let φ be the (1,1)-tensor field defined by $\varphi e_2=-e_3, \ \varphi e_3=e_2, \ \varphi e_1=0$. From the properties of φ and η we can state the following: $g(e_i,\varphi e_j)=d\eta(e_i,e_j)$, where i and j runs from 1 to 3. Using the linearity property of φ and g we have

$$\eta(e_1) = 1,$$

$$\varphi^2 Z = -Z + \eta(Z)e_1$$

$$g(\varphi Z, \varphi W) = g(Z, W) - \eta(Z)\eta(W)$$

for any vector field Z, W.

Then for $e_1 = \xi$, the structure (φ, ξ, η, g) defines a contact metric structure on M.

Let ∇ be the Levi-Civita connection on M with respect to the metric g. Then we have

$$[e_1, e_2] = e^{z-x} \frac{\partial}{\partial x} (e^{z-y} \frac{\partial}{\partial y}) - e^{z-y} \frac{\partial}{\partial y} (e^{z-x} \frac{\partial}{\partial x})$$
$$= e^{z-x} e^{z-y} \frac{\partial^2}{\partial x \partial y} - e^{z-x} e^{z-y} \frac{\partial^2}{\partial x \partial y}$$
$$= 0$$

Similarly,

$$[e_1, e_3] = -e_1, \quad [e_2, e_3] = -e_2, \quad [e_2, e_1] = 0,$$
 $[e_3, e_1] = e_1, \quad [e_3, e_2] = e_2.$

From Koszul's formula, the Riemannian connection ∇ of the metric g is given by

(7.2)
$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

Using (7.2) we have

$$\nabla_{e_1} e_1 = e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = -e_1,$$

$$\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = e_3, \quad \nabla_{e_2} e_3 = -e_2,$$

$$\nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0.$$

We also know that

$$\nabla_{e_2} e_1 = -\varphi e_2 - \varphi h e_2.$$

Comparing the above two relations for $\nabla_{e_2}e_1$ and using $\varphi e_1 = 0$, $\varphi e_3 = e_2$ and $\varphi e_2 = -e_3$, we have

$$he_2 = -e_2$$
.

Similarly, we obtain

$$he_3 = -e_3$$
 and $he_1 = 0$.

It is known that Riemannian curvature tensor

(7.3)
$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Using (7.3) we obtain

$$R(e_2, e_1)e_1 = -e_2,$$

 $R(e_3, e_1)e_1 = -e_3,$
 $R(e_2, e_3)e_1 = 0.$

We conclude that e_1 belongs to the (κ,μ) -nullity distribution, where $\kappa = -1, \mu = 0$. Hence the manifold reduces to an $N(\kappa)$ -contact metric manifold.

All nonzero components of the curvature tensor can be written as follows:

$$R(e_1, e_2)e_2 = -e_1, \quad R(e_1, e_3)e_3 = -e_1,$$

$$R(e_2, e_3)e_3 = -e_2, \quad R(e_2, e_3)e_2 = e_3,$$

$$R(e_1, e_3)e_3 = -e_1, \quad R(e_3, e_1)e_1 = -e_3, \quad R(e_2, e_1)e_1 = -e_2.$$

From the above results, we have the Ricci tensor

$$S(e_1, e_1) = g(R(e_2, e_1)e_1, e_2) + g(R(e_3, e_1)e_1, e_3)$$

= -2

Similarly, we obtain $S(e_2, e_2) = -2$, $S(e_3, e_3) = -2$ and the scalar curvature $r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) = -6$.

From the above calculation we can conclude that S(X,Y) = -2g(X,Y) for $X = a_1e_1 + a_2e_2 + a_3e_3$ and $Y = b_1e_1 + b_2e_2 + b_3e_3$.

For 3-dimensional (κ, μ) -contact metric manifolds, Riemannian curvature tensor can be written as follows:

(7.4)
$$R(X,Y)W = [S(Y,W)X - S(X,W)Y + g(X,W)QX - g(X,W)QY] - \frac{r}{2}[g(Y,W)X - g(X,W)Y].$$

Using the values of Ricci tensors and the scalar curvature we obtain

(7.5)
$$R(X,Y)W = -[g(Y,W)X - g(X,W)Y].$$

From the definition of φ -concircularly semisymmetric manifold we obtain

(7.6)
$$(Z(X,Y) \cdot \varphi)W = Z(X,Y)\varphi W - \varphi Z(X,Y)W$$

$$= R(X,Y)\varphi W - \varphi R(X,Y)W$$

$$-\frac{r}{6}[g(Y,\varphi W)X - g(X,\varphi W)Y$$

$$-g(Y,W)\varphi X + g(X,W)\varphi Y].$$

Using (7.5) and the value of Ricci tensor, (7.6) yields

$$(7.7) (Z(X,Y) \cdot \varphi)W = -\left[g(Y,\varphi W)X - g(X,\varphi W)Y\right] \\ + \left[g(Y,W)\varphi X - g(X,W)\varphi Y\right] \\ + \left[g(Y,\varphi W)X - g(X,\varphi W)Y\right] \\ - g(Y,W)\varphi X + g(X,W)\varphi Y] \\ = 0.$$

Thus Theorem 5.1 is verified.

References

- K. Arslan, R. Ezentas, C. Murathan, and T. Sasahara, Biharmonic submanifolds in 3dimensional (κ, μ)-manifolds, Int. J. Math. Math. Sci. 2005 (2005), no. 22, 3575–3586.
- [2] D. E. Blair, J. S. Kim, and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
- [3] D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifold satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214.
- [4] U. C. De and A. Sarkar, On quasi-conformal curvature tensor of (κ, μ)-contact metric manifold, Math. Rep. (Bucur.) 14(64) (2012), no. 2, 115–129.
- [5] S. Ghosh and U. C. De, On φ-quasiconformally symmetric (κ, μ)-contact metric manifolds, Lobachevskii J. Math. 31 (2010), no. 4, 367–375.
- [6] _____, On a class of (κ, μ) -contact metric manifolds, An. Univ. Oradea Fasc. Mat. 19 (2012), no. 1, 231–242.
- [7] J. B. Jun, A. Yildiz, and U. C. De, On ϕ -recurrent (κ, μ) -contact metric manifolds, Bull. Korean Math. Soc. **45** (2008), no. 4, 689–700.
- [8] W. Kuhnel, Conformal transformations between Einstein spaces, Conformal geometry (Bonn, 1985/1986), 105–146, Asepects math., E12, Vieweg, Braunschweig, 1988.
- [9] C. Özgür, Contact metric manifolds with cyclic-parallel Ricci tensor, Differ. Geom. Dyn. Syst. 4 (2002), no. 1, 21–25.
- [10] B. J. Papantoniou, Contact Remannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (\kappa, \mu)$ -nullity distribution, Yokohama Math. J. **40** (1993), no. 2, 149–161.
- [11] S. Tanno, Ricci curvatures of contact Reimannian manifolds, Tôhoku Math. J. 40 (1988), no. 3, 441–448.
- [12] K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
- [13] A. Yildiz and U. C. De, A classification of (κ, μ) -contact metric manifolds, Comm. Korean Math. Soc. **27** (2012), no. 2, 327–339.

UDAY CHAND DE
DEPARTMENT OF PURE MATHEMATICS
CALCUTTA UNIVERSITY
35 BALLYGUNGE CIRCULAR ROAD
KOL 700019, WEST BENGAL, INDIA
E-mail address: uc_de@yahoo.com

JAE-BOK JUN
DEPARTMENT OF MATHEMATICS
COLLEGE OF NATURAL SCIENCE
KOOKMIN UNIVERSITY
SEOUL 136-702, KOREA

 $E ext{-}mail\ address: jbjun@kookmin.ac.kr}$

SRIMAYEE SAMUI UMESCHANDRA COLLEGE 13, SURYA SEN STREET KOL 700012, WEST BENGAL, INDIA

 $E ext{-}mail\ address: srimayee.samui@gmail.com}$