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MEROMORPHIC FUNCTIONS SHARING FOUR VALUES

WITH THEIR DIFFERENCE OPERATORS OR SHIFTS

Xiao-Min Li and Hong-Xun Yi

Abstract. We prove a uniqueness theorem of nonconstant meromorphic
functions sharing three distinct values IM and a fourth value CM with
their shifts, and prove a uniqueness theorem of nonconstant entire func-
tions sharing two distinct small functions IM with their shifts, which re-
spectively improve Corollary 3.3(a) and Corollary 2.2(a) from [12], where
the meromorphic functions and the entire functions are of hyper order
less than 1. An example is provided to show that the above results are
the best possible. We also prove two uniqueness theorems of nonconstant

meromorphic functions sharing four distinct values with their difference
operators.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We use the standard notation of Nevanlinna
theory as explained in [11, 17, 22]. We will denote by E ⊂ R

+ a set of finite
logarithmic measure (instead of the usual linear measure), not necessarily the
same at each occurrence. Then by the error term S(r, f) we mean any quantity
which is of the growth o(T (r, f)) as r tends to infinity outside of E.

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM, provided
that f and g have the same a-points with the same multiplicities. We say that
f and g share the value a IM, provided that f and g have the same a-points
ignoring multiplicities (cf. [22]). Next we denote by N0(r, a, f, g) the reduced
counting function of common a-points of f and g, and denote N12(r, a, f, g) by

N12(r, a, f, g) = N

(

r,
1

f − a

)

+N

(

r,
1

g − a

)

− 2N0(r, a, f, g).
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where and in what follows, N (r, 1/(f −∞)) means N(r, f). If N12(r, a, f, g) =
S(r, f)+S(r, g), we say that f and g share a IM*. Let NE(r, a) “count” those
points in N (r, 1/(f − a)) , where each point in NE(r, a) is taken by f and g

with the same multiplicity, and each such point is counted only once. We say
that f and g share the value a CM*, if

N

(

r,
1

f − a

)

+N

(

r,
1

g − a

)

− 2NE(r, a) = S(r, f) + S(r, g).

We say that α is a small function of f, if α is a meromorphic function satisfying
T (r, α) = S(r, f) (cf. [22]). Suppose that α 6≡ ∞ is a small function of f and
g. If f − α and g − α share 0 CM (IM), then we say that f, g share the small
function α CM (IM). Throughout this paper, we denote by ρ(f) the order of
f, by ρ2(f) the hyper order of f, and by λ(f) the exponent of convergence of
zeros of f (cf. [11, 17, 22]). We also need the following two definitions:

Definition 1.1 ([21]). Let f be a nonconstant meromorphic function. We
define difference operators as

∆ηf(z) = f(z + η)− f(z) and ∆n
ηf(z) = ∆n−1

η (∆ηf(z)),

where η is a nonzero complex number, n ≥ 2 is a positive integer. If η = 1, we
denote ∆ηf(z) = ∆f(z).

Remark 1.1. Definition 1.1 implies ∆n
ηf(z) =

∑n
j=0

(
n
j

)

(−1)n−jf(z + jη).

Definition 1.2 ([16, Definition 1]). Let p be a positive integer and a ∈ C∪{∞}.
Then by Np)(r, 1/(f − a)) we denote the counting function of those a-points
of f (counted with proper multiplicities) whose multiplicities are not greater
than p, by Np)(r, 1/(f − a)) we denote the corresponding reduced counting
function (ignoring multiplicities). By N(p(r, 1/(f − a)) we denote the counting
function of those a-points of f (counted with proper multiplicities) whose mul-
tiplicities are not less than p, by N (p(r, 1/(f −a)) we denote the corresponding
reduced counting function (ignoring multiplicities), where and what follows,
Np)(r, 1/(f − a)), Np)(r, 1/(f − a)), N(p(r, 1/(f − a)) and N (p(r, 1/(f − a))

mean Np)(r, f), Np)(r, f), N(p(r, f) and N (p(r, f) respectively, if a = ∞.

Recently the value distribution theory of difference polynomials, Nevanlinna
characteristic of f(z + η), Nevanlinna theory for the difference operator and
the difference analogue of the lemma on the logarithmic derivative has been
established (cf. [5, 7, 8, 18, 19]). Using these theories, uniqueness questions
of meromorphic functions sharing values with their shifts have been recently
treated as well (cf. [12, 13, 24]). In this paper, we will consider uniqueness
questions of meromorphic functions sharing four values with their shifts or
difference operators.

We first recall two theorems from [12]:
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Theorem A ([12, Corollary 3.3]). Let f be a nonconstant entire function

such that ρ(f) < ∞, and let a, b and c be three distinct finite values. If f(z)
and f(z + η) share a, b, c IM, where η is a nonzero complex number, then

f(z) = f(z + η) for all z ∈ C.

Theorem B ([12, Theorem 2.1]). Let f be a nonconstant meromorphic func-

tion of finite order, and let a1, a2, a3 be three distinct values in the extended

complex plane. If f(z) and f(z+ η) share a1, a2, a3 CM, where η is a nonzero

complex number, then f(z) = f(z + η) for all z ∈ C.

We will prove the following results:

Theorem 1.1. Let f be a nonconstant meromorphic function such that ρ2(f) <
1, and let η be a nonzero complex number. Suppose that f and ∆ηf share a1,

a2, a3 IM, and share ∞ CM, where a1, a2, a3 are three distinct finite values.

Then 2f(z) = f(z + η) for all z ∈ C.

Theorem 1.2. Let f be a nonconstant meromorphic function such that ρ(f) <
∞, and let η be a nonzero complex number. Suppose that f and ∆ηf share

a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct finite values. Then

2f(z) = f(z + η) for all z ∈ C.

By Theorem 1.1 we get the following result:

Corollary 1.1. Let f be a nonconstant entire function such that ρ2(f) < 1,
and let η be a nonzero complex number. Suppose that f and ∆ηf share a1, a2,

a3 IM, where a1, a2, a3 are three distinct finite values. Then 2f(z) = f(z + η)
for all z ∈ C.

Theorem 1.3. Let f be a nonconstant meromorphic function of hyper order

ρ2(f) < 1, and let η be a nonzero complex number. Suppose that f(z) and

f(z+ η) share 0, 1, c IM, and share ∞ CM, where c is a finite value such that

c 6= 0, 1. Then f(z) = f(z + η) for all z ∈ C.

We also recall the following result from [12]:

Theorem C ([12, Corollary 2.2]). Let f be a nonconstant entire function such

that ρ(f) <∞, and let a1, a2 be two distinct finite values. If f(z) and f(z+ η)
share a1, a2 CM, where η is a nonzero complex number, then f(z) = f(z + η)
for all z ∈ C.

We will prove the following result, which improves Theorem C:

Theorem 1.4. Let f be a nonconstant entire function such that ρ2(f) < 1, and
let a(z) and b(z) be two distinct small functions of f(z) such that a(z), b(z) 6≡
∞. Suppose that f(z) − a(z) and f(z + η) − a(z) share 0 IM, f(z) − b(z)
and f(z + η) − b(z) share 0 IM, where η is a nonzero complex number. Then

f(z) = f(z + η) for all z ∈ C.

We give the following example:
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Example 1.1 ([12]). Let f(z) = exp{sin z} and η = π. Then f(z) and f(z+η)
share 0, 1, −1,∞ CM and ρ2(f) = 1. But f(z) 6≡ f(z+η). This example shows
that the condition “ρ2(f) < 1” in Theorems 1.3 and 1.4 is best possible.

2. Preliminaries

In this section, we will give some lemmas to prove the main results of this
paper, where Lemmas 2.1-2.12 play an important role in proving Theorems
1.1-1.3, Lemmas 2.13-2.15 play an important role in proving Theorem 1.4.
Moreover, Lemmas 2.16-2.20 are used to prove Theorems 2.1-2.4, which can be
found in this section.

Lemma 2.1 ([6, Lemma 1]). Let f and g be two distinct nonconstant meromor-

phic functions, and let a1, a2, a3 and a4 be four distinct values in the extended

complex plane. If f and g share a1, a2, a3 and a4 IM, then

(i) T (r, f) = T (r, g) +O(log(rT (r, f))) as r 6∈ E and r → ∞.

(ii) 2T (r, f) =
4∑

j=1

N
(

r, 1
f−aj

)

+ O(log(rT (r, f))) as r 6∈ E and r → ∞,

where N(r, 1/(f −∞)) means N(r, f).

Lemma 2.2 ([1, Theorem 3]). Let f and g be two nonconstant rational func-

tions. If f and g share four distinct values a1, a2, a3, a4 IM, then f = g.

Lemma 2.3 ([9, Theorem 5.1]). Let f be a nonconstant meromorphic function

and η ∈ C. If f is of finite order, then

m

(

r,
f(z + η)

f(z)

)

= O

(
T (r, f) log r

r

)

for all r outside of a set E ⊂ (1,+∞) satisfying

lim sup
r−→∞

∫

E∩[1,r) dt/t

log r
= 0,

i.e., outside of a set E ⊂ (1,+∞) of zero logarithmic density. If ρ2(f) = ρ2 < 1
and ε > 0, then

m

(

r,
f(z + η)

f(z)

)

= o

(
T (r, f)

r1−ρ2−ε

)

for all r outside of a finite logarithmic measure.

Lemma 2.4 ([6]). Let f and g be two nonconstant meromorphic functions that

share a1, a2, a3 IM and a4 CM, where a1, a2, a3, a4 are four distinct values

in the extended complex plane. Suppose that there exists some real constant

µ > 4/5 and some set I ⊂ R
+ that has infinite linear measure such that

N(r, a4, f)/T (r, f) ≥ µ for all r ∈ I. Then f and g share all four values CM.

Lemma 2.5 ([14, Lemma 7] or [22, Theorem 4.1]). Let F and G be two distinct

nonconstant meromorphic functions such that F and G share 0, 1, c, ∞ CM,

where c is a finite value such that c 6= 0, 1. Then F, G satisfy one of the following
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six relations: (i) F + G = 0, (ii) F + G = 2, (iii) (F − 1/2) (G− 1/2) = 1/4,
(iv) FG = 1, (v) (F−1)(G−1) = 1 and (vi) F+G = 1, where c ∈ {−1, 2, 1/2},
c = −1 in (i) and (iv), c = 2 in (ii) and (v), c = 1/2 in (iii) and (vi).

Lemma 2.6 ([22, Theorem 1.62]). Let f1, f2, . . . , fn be nonconstant mero-

morphic functions, and let fn+1 6≡ 0 be a meromorphic function such that
∑n+1

j=1 fj = 1. If there exists a subset I ⊆ R
+ satisfying mesI = ∞ such that

n+1∑

i=1

N

(

r,
1

fi

)

+ n

n+1∑

i=1
i6=j

N(r, fi) < (µ+ o(1))T (r, fj), j = 1, 2, . . . , n,

as r → ∞ and r ∈ I, where µ < 1. Then fn+1 = 1.

Lemma 2.7 ([23, Theorem 5.1]). Let f and g be two distinct nonconstant

meromorphic functions, and let a1, a2, a3, a4, a5 be five distinct values in the

extended complex plane. If f and g share a1, a2, a3, a4 IM*, then

N0(r, a5, f, g) ≤ N12(r, a4, f, g) + S(r, f).

Lemma 2.8 ([5, Theorem 2.2]). Let f be a meromorphic function with expo-

nent of convergence of poles λ(1/f) = λ < +∞, and let η 6= 0 be a complex

number. Then, for each ε > 0, we have

N(r, f(z + η)) = N(r, f(z)) +O(rλ−1+ε) +O(log r).

We next introduce the term ε-set (cf. [4]), which is used in the following
lemma. We define an ε-set to be a countable union of discs

E =
∞⋃

j=1

B(bj , rj) such that lim
j→∞

|bj | = ∞ and
∞∑

j=1

rj

|bj|
<∞.

Here B(a, r) denotes the open disc of center a and radius r, and S(a, r) will
denote the corresponding boundary circle. Note that if E is an ε-set, then
the set of r ≥ 1 for which the circle S(0, r) meets E has a finite logarithmic
measure and hence a zero logarithmic density.

The term ε-set was introduced in the context of the following theorem, which
was proved by Hayman [10] for entire functions, and by Anderson-Clunie [2]
for meromorphic functions with deficient poles.

Lemma 2.9 ([4, Lemma 3.3]). Let g be a function transcendental and mero-

morphic in the plane of order less than 1, and let h > 0. Then there exists an

ε-set E such that

g′(z + η)

g(z + η)
−→ 0 and

g(z + η)

g(z)
−→ 1 as z → ∞ in C \ E,

uniformly in η for |η| ≤ h. Further, E may be chosen so that for large |z| 6∈ E

the function g has no zeros or poles in |ζ − z| ≤ h.
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Next we introduce Wiman-Valiron theory: Let f =
∑

∞

n=0 anz
n be an entire

function. We define by µ(r) = max{|an|r
n : n = 0, 1, 2, . . .} the maximum term

of f, and define by ν(r, f) = max{m : µ(r) = |am|rm} the central index of f
(cf. [15, pp. 187–199]).

Lemma 2.10 ([15, pp. 187–199]). Let g be a transcendental entire function,

let 0 < δ < 1/4 and z be such that |z| = r and that |g(z)| > M(r, g)ν(r, g)−
1

4
+δ

holds. Then there exists a set E ⊂ (0,+∞) of finite logarithmic measure,

i.e.,
∫

E dt/t < +∞, such that g(m)(z) =
(

ν(r,g)
z

)m

(1 + o(1)) g(z) holds for all

m ≥ 0 and r 6∈ E.

Lemma 2.11 ([6, Lemma 3]). Let f and g be distinct nonconstant meromor-

phic functions that share four values a1, a2, a3 and a4 IM, where a4 = ∞. Then

the following statements hold:
(i) N1(r, 0, f

′) = O(log(rT (r, f))) and N1(r, 0, g
′) = O(log(rT (r, f))) as r 6∈

E and r → ∞, where N1(r, 0, f
′) and N1(r, 0, g

′) “count” respectively only those

points in N(r, 0, f ′) and N(r, 0, g′) which do not occur when f(z) = g(z) = aj
for some j = 1, 2, 3, 4.

(ii) For j = 1, 2, 3, 4, let N2(r, aj) refer only to those aj-points that are

multiple for both f and g and “count” each such point the number of times of

the smaller of the two multiplicities. Then
∑4

j=1N2(r, aj) = O(log(rT (r, f)))
as r 6∈ E and r → ∞.

Lemma 2.12 ([6]). Suppose that f and g are two distinct nonconstant mero-

morphic functions that share a1, a2, a3, ∞ IM, where a1, a2, a3 are three

distinct finite values. Set

φ =
f ′g′(f − g)2

(f − a1)(f − a2)(f − a3)(g − a1)(g − a2)(g − a3)
.

Then φ is an entire function such that T (r, φ) = S(r, f).

Lemma 2.13 ([1, Theorem 1]). Let P1 and P2 be two nonconstant polynomials,

and let a and b be two distinct finite values. If P1 and P2 share a and b IM,

then P1 = P2.

Lemma 2.14. Let f be a nonconstant entire function such that ρ2(f) < 1, and
let a and b be two distinct small functions of f such that a 6≡ ∞ and b 6≡ ∞.

Set

(2.1) ϕ(z) =
Θ(f(z)){f(z)− f(z + η)}

(f(z)− a(z))(f(z)− b(z))

and

(2.2) χ(z) =
Θ(f(z + η)){f(z)− f(z + η)}

(f(z + η)− a(z))(f(z + η)− b(z))
,

where

Θ(f(z)) =

∣
∣
∣
∣

f(z)− a(z) a(z)− b(z)
f ′(z)− a′(z) a′(z)− b′(z)

∣
∣
∣
∣
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=

∣
∣
∣
∣

f(z)− b(z) a(z)− b(z)
f ′(z)− b′(z) a′(z)− b′(z)

∣
∣
∣
∣

=

∣
∣
∣
∣

f(z)− a(z) f ′(z)− a′(z)
f(z)− b(z) f ′(z)− b′(z)

∣
∣
∣
∣
.(2.3)

Suppose that f(z) − a(z) and f(z + η) − a(z) share 0 IM, f(z) − b(z) and

f(z + η)− b(z) share 0 IM. Then T (r, ϕ(z)) + T (r, χ(z)) = S(r, f(z)).

Proof. By (2.3) we know that (2.1) can be rewritten respectively as

ϕ(z) =

(
f ′(z)− b′(z)

f(z)− b(z)
−
f ′(z)− a′(z)

f(z)− a(z)

)

· {f(z)− f(z + η)}(2.4)

=
Θ(f(z)){(f(z)− a(z)) + a(z)}

(f(z)− a(z))(f(z)− b(z))
·

(

1−
f(z + η)

f(z)

)

= ϕ1(z)

(

1−
f(z + η)

f(z)

)

(2.5)

for all z ∈ C, where
(2.6)

ϕ1(z) =

∣
∣
∣
∣

f(z)− b(z) a(z)− b(z)
f ′(z)− b′(z) a′(z)− b′(z)

∣
∣
∣
∣

f(z)− b(z)
+

a(z)

∣
∣
∣
∣

f(z)− a(z) f ′(z)− a′(z)
f(z)− b(z) f ′(z)− b′(z)

∣
∣
∣
∣

(f(z)− a(z))(f(z)− b(z))
.

Similarly, (2.2) can be rewritten respectively as

χ(z) =

(
f ′(z + η)− b′(z)

f(z + η)− b(z)
−
f ′(z + η)− a′(z)

f(z + η)− a(z)

)

· {f(z)− f(z + η)}(2.7)

=
Θ(f(z + η))f(z + η)

(f(z + η)− a(z))(f(z + η)− b(z))
·

(
f(z)

f(z + η)
− 1

)

= χ1(z)

(
f(z)

f(z + η)
− 1

)

(2.8)

for all z ∈ C, where

χ1(z) =

∣
∣
∣
∣

f(z + η)− b(z) a(z)− b(z)
f ′(z + η)− b′(z) a′(z)− b′(z)

∣
∣
∣
∣

f(z + η)− b(z)

+

a(z)

∣
∣
∣
∣

f(z + η)− a(z) f ′(z + η)− a′(z)
f(z + η)− b(z) f ′(z + η)− b′(z)

∣
∣
∣
∣

(f(z + η)− a(z))(f(z + η)− b(z))
.(2.9)

Noting that f(z) − a(z) and f(z + η) − a(z) share 0 IM, f(z) − b(z) and
f(z + η)− b(z) share 0 IM, we get by (2.4) and (2.7) that

N(r, ϕ(z)) +N(r, χ(z)) ≤ 2N(r, a(z)) + 2N(r, b(z))

≤ 2T (r, a(z)) + 2T (r, b(z))

= S(r, f(z)).(2.10)
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By (2.5), (2.6), (2.8), (2.9), Lemma 2.3 and the lemma of logarithmic derivatives
(cf. [17, Theorem 2.3.3]) we deduce

(2.11) m(r, ϕ(z)) +m(r, χ(z)) ≤ S(r, f(z)) + S(r, f(z + η)).

By Nevanlinna’s three small functions theorem (cf. [22, Theorem 1.36]) we get

T (r, f(z)) ≤ N

(

r,
1

f(z)− a(z)

)

+N

(

r,
1

f(z)− b(z)

)

+ S(r, f(z))

= N

(

r,
1

f(z + η)− a(z)

)

+N

(

r,
1

f(z + η)− b(z)

)

+ S(r, f(z))

≤ 2T (r, f(z + η)) + S(r, f(z)).(2.12)

Similarly

(2.13) T (r, f(z + η)) ≤ 2T (r, f(z)) + S(r, f(z + η)).

By (2.12) and (2.13) we deduce

(2.14) S(r, f(z)) = S(r, f(z + η)).

By (2.11) and (2.14) we get

(2.15) m(r, ϕ(z)) +m(r, χ(z)) = S(r, f(z)).

By (2.10) and (2.15) we get the conclusion of Lemma 2.14. �

Lemma 2.15 ([18, Proof of Theorem 2.3]). Let f be a transcendental mero-

morphic solution of a difference equation of the form

(2.16) U(z, f)P (z, f) = Q(z, f)

such that ρ2(f) < 1, where U(z, f), P (z, f), Q(z, f) are difference polynomials

such that the total degree degU(z, f) = n in f(z) and its shifts f(z + η1), . . . ,
f(z + ηk), and degQ(z, f) ≤ n. Moreover, assume that all coefficients bλ in

(2.16) are small in the sense that T (r, bλ) = S(r, f) and that U(z, f) contains
exactly one term of maximal total degree in f(z) and its shifts. Then we have

m(r, P (z, f)) = S(r, f).

Lemma 2.16 ([3, Theorem 1.1]). Let f be a nonconstant zero order meromor-

phic function, and q ∈ C \ {0}. Then m (r, f(qz)/f(z)) = o(T (r, f)) on a set of

logarithmic density 1.

Lemma 2.17 ([3, Theorem 2.1] or [18, Theorem 2.5]). Let f be a transcen-

dental meromorphic solution of order zero of a q-difference equation of the

form Uq(z, f)Pq(z, f) = Qq(z, f), where Uq(z, f), Pq(z, f) and Qq(z, f) are

q-difference polynomials such that the total degree degUq(z, f) = n in f(z)
and its q-shifts, where degQq(z, f) ≤ n. Moreover, we assume that Uq(z, f)
contains just one term of maximal total degree in f(z) and its q-shifts. Then

m(r, Pq(z, f)) = o(T (r, f)) on a set of logarithmic density 1.
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Lemma 2.18 ([25, Theorem 1.1]). Let f(z) be a nonconstant zero order mero-

morphic function, and let q ∈ C \ {0}. Then T (r, f(qz)) = (1 + o(1))T (r, f(z))
on a set of lower logarithmic density 1.

Lemma 2.19 ([25, Theorem 1.1]). Let f(z) be a nonconstant zero order mero-

morphic function, and let q ∈ C \ {0}. Then N(r, f(qz)) = (1+ o(1))N(r, f(z))
on a set of lower logarithmic density 1.

Applying Lemmas 2.16-2.19 and then proceeding as in the proof of Lemma
2.14, we can get the following result:

Lemma 2.20. Let f(z) be a nonconstant zero order entire function, and let

q ∈ C \ {0}, and let a(z), b(z) be two distinct small functions of f(z) such that

a(z) 6≡ ∞ and b(z) 6≡ ∞. Set

ϕ2(z) =
Θ(f(z)){f(z)− f(qz)}

(f(z)− a(z))(f(z)− b(z))

and

χ2(z) =
Θ(f(qz)){f(z)− f(qz)}

(f(qz)− a(z))(f(qz)− b(z))
,

where Θ(f(z)) is defined as in (2.3). Suppose that f(z)−a(z) and f(qz)−a(z)
share 0 IM, f(z)− b(z) and f(qz)− b(z) share 0 IM. Then

m(r, ϕ2(z)) +m(r, χ2(z)) = o(T (r, f))

on a set of logarithmic density 1.

Applying Lemmas 2.16-2.20, we can prove the following uniqueness results
of zero order meromorphic functions sharing four values with their q-difference
operators or q-shifts, the proofs are just the same as the proofs of Theorems
1.1-1.4:

Theorem 2.1. Let f(z) be a nonconstant zero order meromorphic function,

and let q ∈ C \ {0}. Suppose that f(z) and f(qz) − f(z) share 0, 1, c IM,

and share ∞ CM, where c is a complex number such that c 6= 0, 1,∞. Then

2f(z) = f(qz) for all z ∈ C.

Theorem 2.2. Let f(z) be a nonconstant zero order meromorphic function,

and let q ∈ C \ {0}. Suppose that f(z) and f(qz) − f(z) share a1, a2, a3, a4
IM, where a1, a2, a3, a4 are four distinct finite values. Then 2f(z) = f(qz) for
all z ∈ C.

Theorem 2.3. Let f(z) be a nonconstant zero order meromorphic function,

and let q ∈ C \ {0}. Suppose that f(z) and f(qz) share 0, 1, c IM, and share

∞ CM, where c is a finite value such that c 6= 0, 1. Then f(z) = f(qz) for all

z ∈ C.

Theorem 2.4. Let f be a nonconstant zero order entire function, let q ∈
C\{0}, and let a and b be two distinct small functions of f such that a, b 6≡ ∞.

Suppose that f(z)−a(z) and f(qz)−a(z) share 0 IM, f(z)−b(z) and f(qz)−b(z)
share 0 IM. Then f(z) = f(qz) for all z ∈ C.
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3. Proof of theorems

Proof of Theorem 1.1. We first suppose that f is a transcendental meromor-
phic function, while ∆ηf is a rational function. Then, by Lemma 2.1 we get

T (r, f(z)) = T (r,∆ηf(z)) +O(log(rT (r, f(z)))) = O(log(rT (r, f(z))))

as r → ∞ and r 6∈ E, this implies that f(z) is a rational function, which
is impossible. Secondly we suppose that f(z) and ∆ηf(z) are nonconstant
rational functions. Then, by Lemma 2.2 we get the conclusion of Theorem
1.1. Finally we suppose that f(z) and ∆ηf(z) are transcendental meromorphic
functions and suppose that f 6≡ ∆ηf.

Let z∞ ∈ C be a pole of f(z). Then, by the condition that f(z) and ∆ηf(z)
share ∞ CM we know that either f(z + η) is analytic at z∞ or z∞ is a pole
of f(z + η) such that the multiplicity of z∞ related to f(z + η) is not greater
than the multiplicity of z∞ related to f(z). Combining Lemmas 2.1 and 2.3,
and the condition that f(z) and ∆ηf(z) share a1, a2, a3 IM, we get

2T (r, f(z)) = N

(

r,
1

f(z)− a1

)

+N

(

r,
1

f(z)− a2

)

+N

(

r,
1

f(z)− a3

)

+N (r, f(z)) + S(r, f(z))

≤ N

(

r,
1

f(z + η)− 2f(z)

)

+N (r, f(z)) + S(r, f(z))

≤ T (r, f(z + η)− 2f(z)) +N (r, f(z)) + S(r, f(z))

= m(r, f(z + η)− 2f(z)) +N(r, f(z + η)− 2f(z)) +N (r, f(z))

+ S(r, f(z))

≤ m(r, f(z)) +m

(

r,
f(z + η)

f(z)
− 2

)

+N(r, f(z)) +N (r, f(z))

+ S(r, f(z))

≤ T (r, f(z)) +N(r, f(z)) + S(r, f(z)),

i.e.,

(3.1) T (r, f(z)) = N(r, f(z)) + S(r, f(z)).

By (3.1) we know that there exists a subset I ⊂ R
+ with logarithmic measure

logmesI = +∞ such that

(3.2) lim
r→∞

r∈I

N(r, f(z))

T (r, f(z))
= 1.

By (3.2) and Lemma 2.4 we know that f(z) and ∆ηf(z) share a1, a2, a3, ∞
CM, and so F (z) and G(z) share 0, 1, c, ∞ CM, where

(3.3) F (z) =
f(z)− a1

a2 − a1
, G(z) =

∆ηf(z)− a1

a2 − a1
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and

(3.4) c =
a3 − a1

a2 − a1
.

By Lemma 2.5 we know that F (z), G(z) satisfy one of the six relations of
Lemma 2.5. We discuss the following six cases:

Case 1. Suppose that F (z) and G(z) satisfy (i) of Lemma 2.5. Then
F (z) +G(z) = 0 for all z ∈ C, and so we get by (3.3) that f(z + η) = 2a1 for
all z ∈ C, which is impossible.

Case 2. Suppose that F (z) and G(z) satisfy (ii) of Lemma 2.5. Then
F (z) +G(z) = 2 for all z ∈ C, and so we get by (3.3) that f(z + η) = 2a2 for
all z ∈ C, which is impossible.

Case 3. Suppose that F (z) and G(z) satisfy (iii) of Lemma 2.5. Then 1/2,
∞ are Picard exceptional values of F (z) and G(z). Hence

(3.5) F (z) =
1 + eγ1(z)

2
, G(z) =

1 + e−γ1(z)

2

for all z ∈ C, where γ1 is a nonconstant entire function. By substituting (3.3)
into (3.5) we get

(3.6) eγ1(z+η) − eγ1(z) − e−γ1(z) =
a2 + a1

a2 − a1

for all z ∈ C. Noting that γ1 is a non-constant entire function, we can get by
(3.6) and Lemma 2.6 that (a2+a1)/(a2−a1) = 0, and so (3.6) can be rewritten
as

(3.7) eγ1(z+η)+γ1(z) − e2γ1(z) = 1

for all z ∈ C. By (3.7) and Lemma 2.6 we can get a contradiction.

Case 4. Suppose that F (z) and G(z) satisfy (iv) of Lemma 2.5. Then 0, ∞
are Picard exceptional values of F (z) and G(z). Hence

(3.8) F (z) = eγ2(z), G(z) = e−γ2(z),

where γ2 is a nonconstant entire function. By (3.8) we get

(3.9) eγ2(z+η) − eγ2(z) − e−γ2(z) =
a1

a2 − a1

for all z ∈ C. Noting that γ2 is a nonconstant entire function, we can get by
(3.9) and Lemma 2.6 that a1/(a2 − a1) = 0, and so (3.9) can be rewritten as

(3.10) eγ2(z+η)+γ2(z) − e2γ2(z) = 1

for all z ∈ C. By (3.10) and Lemma 2.6 we can get a contradiction.

Case 5. Suppose that F (z) and G(z) satisfy (v) of Lemma 2.5. Then

(3.11) F (z) = 1 + eγ3(z), G(z) = 1 + e−γ3(z),
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where γ3 is a nonconstant entire function. Then, by (3.3) and (3.11) we get

(3.12) eγ3(z+η) − eγ3(z) − e−γ3(z) =
a2

a2 − a1

for all z ∈ C. Proceeding as in Case 3, we can get a contradiction by (3.12).

Case 6. Suppose that F (z) and G(z) satisfy (vi) of Lemma 2.5. Then
F (z)+G(z) = 1 for all z ∈ C. This together with (3.3) gives f(z+η) = a1+a2,
which is impossible. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. First of all, we suppose that f(z) is a transcendental
meromorphic function, while ∆ηf(z) is a rational function. Then, by Lemma
2.1 we get

T (r, f(z)) = T (r,∆ηf(z)) +O(log(rT (r, f(z)))) = O(log(rT (r, f(z)))),

which implies that f(z) is a rational function, which is impossible. Secondly
we suppose that f(z) and ∆ηf(z) are nonconstant rational functions. Then it
follows by Lemma 2.2 that f = ∆ηf, which reveals the conclusion of Theorem
1.2. Finally we suppose that f and ∆ηf are transcendental meromorphic func-
tions such that f 6≡ ∆ηf. Combining this with Lemma 2.7 and the condition
that f(z) and ∆ηf(z) share a1, a2, a3, a4 IM, we have

(3.13) N0(r,∞, f,∆ηf) ≤ N12(r, a4, f,∆ηf) + S(r, f(z)) = S(r, f(z)).

Noting that ∆ηf(z) = f(z + η)− f(z), we get by (3.13) that

N(r, |f(z) = ∞, f(z + η) 6= ∞) +N(r, |f(z) = f(z + η) = ∆ηf(z) = ∞)

≤ N0(r,∞, f,∆ηf)

= S(r, f(z)),(3.14)

where N(r, |f(z) = f(z + η) = ∆ηf(z) = ∞) denotes the reduced counting
function of common poles of f(z), f(z + η) and ∆ηf(z) in {z : |z| < r},

N(r, |f(z) = ∞, f(z + η) 6= ∞) denotes the reduced counting function of those
points in N(r, f(z)), which are not poles of f(z + η). Therefore, by (3.14) we
get

N(r,∆ηf(z)) = N(r, |f(z) = ∞, f(z + η) 6= ∞)

+N(r, |f(z + η) = ∞, f(z) 6= ∞)

+N(r, |f(z) = f(z + η) = ∆ηf(z) = ∞)

= N(r, |f(z + η) = ∞, f(z) 6= ∞) + S(r, f(z))

≤ N(r, f(z + η)) + S(r, f(z)),(3.15)

where N(r, |f(z) = f(z + η) = ∞) denotes the reduced counting function of
common poles of f(z) and f(z + η) in |z| < r, N(r, |f(z + η) = ∞, f(z) 6= ∞)
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denotes the reduced counting function of those points in N(r, f(z + η)), which
are not poles of f(z). Similarly

(3.16) N(r, f(z + η)− 2f(z)) ≤ N(r, f(z + η)) + S(r, f(z)).

By Lemma 2.1 and the condition that f(z), ∆ηf(z) share a1, a2, a3, a4 IM we
get

(3.17) S(r, f(z)) = S(r,∆ηf(z)).

By Lemma 2.1 and the second fundamental theorem we get

3T (r, f(z)) ≤ N(r, f(z)) +

4∑

j=1

N

(

r,
1

f(z)− aj

)

+ S(r, f(z))

= N(r, f(z)) + 2T (r, f(z)) + S(r, f(z)),

which implies that

(3.18) T (r, f(z)) = N(r, f(z)) + S(r, f(z)) = N(r, f(z)) + S(r, f(z)),

which implies that

(3.19) N1)(r, f(z)) = N(r, f(z)) + S(r, f(z)) = T (r, f(z)) + S(r, f(z)).

Similarly, we can get

(3.20) T (r,∆ηf(z)) = N(r,∆ηf(z))+S(r, f(z)) = N(r,∆ηf(z))+S(r, f(z)).

and

(3.21) N1)(r,∆ηf(z))=N(r,∆ηf(z))+S(r, f(z)) = T (r,∆ηf(z))+S(r, f(z)).

By (3.19) and (3.21) we get

N(2(r, f(z + η)) = N(2(r,∆ηf(z)) + S(r, f(z))

≤ N(r,∆ηf(z))−N1)(r,∆ηf(z))

≤ S(r, f(z)).(3.22)

By (3.22) we get

N(r, f(z + η)) = N1)(r, f(z + η)) +N(2(r, f(z + η))

= N1)(r, f(z + η)) + S(r, f(z)).(3.23)

By (3.14), (3.15), (3.16), (3.17), (3.19), (3.21), (3.23), Lemma 2.3, Lemma 2.8,
the second fundamental theorem and the condition that f(z), ∆ηf(z) share a1,
a2, a3, a4 IM we get

3T (r,∆ηf(z)) ≤ N (r,∆ηf(z)) +

4∑

j=1

N

(

r,
1

∆ηf(z)− aj

)

+ S(r,∆ηf(z))

≤ N(r, f(z + η)) +N

(

r,
1

∆ηf(z)− f(z)

)

+ S(r, f(z))

≤ N(r, f(z + η)) + T (r, f(z + η)− 2f(z)) + S(r, f(z))
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= N(r, f(z + η)) +N (r, f(z + η)− 2f(z))

+m (r, f(z + η)− 2f(z)) + S(r, f(z))

≤ N(r, f(z + η)) +N (r, f(z + η)− 2f(z)) +m (r, f(z))

+m

(

r,
f(z + η)

f(z)
− 2

)

+ S(r, f(z))

≤ 2N(r, f(z + η)) +m (r, f(z)) + S(r, f(z))

≤ 2N (r, f(z + η)) +m(r, f(z)) + S(r, f(z))

= 2N(r, f(z)) +m(r, f(z)) +O(rρ(f)−1) +O(log r) + S(r, f(z))

≤ 2T (r, f(z)) +O(rρ(f)−1) +O(log r) + S(r, f(z)),

i.e.,

(3.24) 3T (r,∆ηf(z)) ≤ 2T (r, f(z)) +O(rρ(f)−1+ε) +O(log r) + S(r, f(z)).

By Lemma 2.1 and the condition that f(z), ∆ηf(z) share a1, a2, a3, a4 IM we
get

(3.25) T (r,∆ηf(z)) = T (r, f(z)) + S(r, f(z)).

By (3.24) and (3.25) we get

(3.26) T (r, f(z)) ≤ O(rρ(f)−1+ε) +O(log r) + S(r, f(z)).

Noting that S(r, f(z)) = o(T (r, f(z))) as r → ∞ and r 6∈ E, where E ⊂ R
+ is

some subset of a finite logarithmic measure, we get

(3.27) T (r, f(z)) = O(rρ(f)−1+ε) +O(log r)

as r → ∞ and r 6∈ E. By (3.27), the supposition that f(z) is a transcendental
meromorphic function we deduce ρ(f) ≥ 1. This together with the standard
reasoning of removing exceptional set (cf. [17, Lemma 1.1.2]) gives

(3.28) T (r, f(z)) = O((2r)ρ(f)−1+ε) +O(log r + log 2)

as r → ∞. By (3.28) we get ρ(f) ≤ ρ(f)− 1, which is impossible. This proves
Theorem 1.2. �

Proof of Theorem 1.3. First of all, let

(3.29) ψ(z) =
φ1(z)

φ1(z + η)

for all z ∈ C, where

(3.30) φ1(z) =
f ′(z)

f(z)(f(z)− 1)(f(z)− c)

for all z ∈ C. Then it follows by (3.29) and (3.30) that

(3.31) ψ(z) =
f(z + η)(f(z + η)− 1)(f(z + η)− c)f ′(z)

f(z)(f(z)− 1)(f(z)− c)f ′(z + η)
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for all z ∈ C. By Lemma 2.11(ii) and the assumptions of Theorem 1.3 we get

(3.32) N (r, ψ) +N

(

r,
1

ψ

)

= S(r, f(z)).

Noting that ρ2(f) = ρ2(f
′) < 1, by (3.29)-(3.32) and Lemma 2.3 we get

(3.33) m(r, ψ) = S(r, f(z)).

By (3.32) and (3.33) we get

(3.34) T (r, ψ) = S(r, f(z)).

By rewriting (3.31) we get

(3.35)
f ′(z)

f(z)(f(z)− 1)(f(z)− c)
= ψ(z)·

f ′(z + η)

f(z + η)(f(z + η)− 1)(f(z + η)− c)

for all z ∈ C. Next we suppose that f(z) 6≡ f(z + η) and let a1 = 0, a2 = 1,
a3 = c, a4 = ∞. By Lemma 2.11(ii), we can see that

∑

n≥2,m≥2

N (n,m)(r, aj) = S(r, f(z)).

By this equality we discuss the following four cases:

Case 1. Suppose that there exists some aj (1 ≤ j ≤ 3) such that

(3.36) N (1,1)(r, aj) 6= S(r, f(z)),

where N (1,1)(r, aj) denotes the reduced counting function of common simple
aj-points of f(z) and f(z+η) in |z| < r. By (3.36) we know that at least one of

N (1,1)(r, 0), N (1,1)(r, 1) and N (1,1)(r, c), say N (1,1)(r, 0), satisfies N (1,1)(r, 0) 6=
S(r, f(z)). Let z0 ∈ {z : |z| < r} be a common simple 1-point of f(z) and
f(z+ η). Then, by the Laurent expansions of the left side and the right side of
(3.35) in a punctured disk about z0 we deduce ψ(z0) = 1, this together with
(3.34) and N (1,1)(r, 0) 6= S(r, f(z)) implies that ψ = 1, and so (3.35) can be
rewritten as

(3.37)
f ′(z)

f(z)(f(z)− 1)(f(z)− c)
=

f ′(z + η)

f(z + η)(f(z + η)− 1)(f(z + η)− c)

for all z ∈ C. By (3.37) and the condition that f(z) and f(z + η) share 0, 1,
c IM we deduce that f(z) and f(z + η) share 0, 1, c CM. Combining Lemma
2.5, we consider the following two subcases:

Subcase 1.1. Suppose that f(z) and f(z+η) satisfy one of f(z)+f(z+η) =
0, f(z) + f(z + η) = 2 and f(z) + f(z + η) = 1, say

(3.38) f(z) + f(z + η) = 0

for all z ∈ C, where c = −1. Then 1 and −1 are Picard exceptional values of
f(z) and f(z + η). Hence

(3.39) f(z)− 1 = (f(z) + 1)eγ3(z)
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for all z ∈ C, where γ3 is a nonconstant entire function. By (3.39) we have

(3.40) f(z) =
1 + eγ3(z)

1− eγ3(z)

for all z ∈ C. By substituting (3.40) into (3.38) we have eγ3(z)+γ3(z+η) = 1 for
all z ∈ C. Hence

(3.41) γ3(z) + γ3(z + η) = c

for all z ∈ C, where c is some finite complex constant. On the other hand,
by (3.40) we have ρ2(f) = ρ2(e

γ3) = ρ(γ3) < 1. This implies that γ3 is a
nonconstant entire function of order ρ(γ3) < 1. Therefore, by Lemma 2.9 we
know that for a positive number h satisfying |η| < h, there exists an ε-set E1,
such that as z 6∈ E1 and |z| → ∞, we have

(3.42)
γ3(z + η)

γ3(z)
−→ 1,

uniformly in η. Next we let Er be the set of r ≥ 1 for which the circle S(0, r)
meets E1. Then, Er has a finite logarithmic measure (cf. [10]). Therefore,
by (3.42) and Lemma 2.10 we know that there exist some infinite sequence of
points zrk = rke

iθk , where and in what follows, rk 6∈ Er ∪ E and θk ∈ [0, 2π),
E ⊂ (1,+∞) is a subset of finite logarithmic measure, i.e.,

∫

E dt/t < +∞, such
that

(3.43) |γ3(zrk)| =M(rk, γ3) −→ ∞ and
γ3(zrk + η)

γ3(zrk)
−→ 1

as rk → ∞. By (3.41) and (3.43) we have

(3.44) 2 = 1 + lim
rk→∞

γ3(zrk + η)

γ3(zrk)
= lim

rk→∞

c

γ3(zrk)
= 0,

which is a contradiction.

Subcase 1.2. Suppose that f(z) and f(z+η) satisfy one of f(z)f(z+η) = 1,
(f(z)− 1/2) (f(z + η)− 1/2) = 1/4 and (f(z)− 1)(f(z + η)− 1) = 1, say

(3.45) (f(z)− 1/2) (f(z + η)− 1/2) = 1/4

for all z ∈ C, where c = 1/2. Then ∞ and 1/2 are Picard exceptional values
of f(z) and f(z + η). Hence f(z) = eγ4(z)/2 + 1/2 for all z ∈ C, where γ4 is a
nonconstant entire function. This together with (3.45) gives eγ4(z)+γ4(z+η) =
1 for all z ∈ C. Next in the same manner as in Subcase 1.1 we can get a
contradiction.

Case 2. Suppose that there exists some aj (1 ≤ j ≤ 3) such that

(3.46) N (1,m)(r, aj) 6= S(r, f(z)),

where m ≥ 2 is a positive integer, N (1,m)(r, aj) denotes the reduced counting
function of those zeros of f(z) − aj with multiplicity 1, and of f(z + η) − aj
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with multiplicity m. Then, by (3.34), (3.35) and (3.46) we deduce ψ = 1/m,
and so (3.35) can be rewritten as

(3.47)
mf ′(z)

f(z)(f(z)− 1)(f(z)− c)
=

f ′(z + η)

f(z + η)(f(z + η)− 1)(f(z + η)− c)

for all z ∈ C. Set
(3.48)

φ2(z) =
f(z)′f ′(z + η)(f(z)− f(z + η))2

f(z)(f(z)− 1)(f(z)− c)f(z + η)(f(z + η)− 1)(f(z + η)− c)
.

Then, by (3.48) and Lemma 2.12 we know that φ2(z) 6≡ 0 is an entire function
such that

(3.49) T (r, φ2(z)) = S(r, f(z)).

By (3.47) and (3.48) we get

(3.50) (f(z)− c)2 =
m

φ2(z)
·

(
f(z + η)− 1

f(z)− 1
− 1

)2

·

(
f ′(z)

f(z)

)2

.

By (3.50), Lemma 2.3 and the lemma of logarithmic derivatives (cf. [17, The-
orem 2.3.3]) we get

2m(r, f(z)) +O(1)

= m(r, (f(z)− c)2)

≤ m

(

r,
m

φ2(z)

)

+ 2m

(

r,
f(z + η)− 1

f(z)− 1
− 1

)

+ 2m

(

r,
f ′(z)

f(z)

)

≤ T (r, φ2(z)) + S(r, f(z)) ≤ S(r, f(z)),

i.e.,m(r, f(z)) = S(r, f(z)), which implies that there exists some subset I ⊂ R
+

with its linear measure mesI = +∞ such that

(3.51) lim
r→∞

r∈I

N(r, f(z))

T (r, f(z))
= 1.

By (3.51) and Lemma 2.4 we know that f(z) and f(z+η) share 0, 1, c, ∞ CM.
Next in the same manner as in Case 1 we can get a contradiction.

Case 3. Suppose that there exists some aj (1 ≤ j ≤ 3) such that

(3.52) N (m,1)(r, aj) 6= S(r, f(z)),

where m ≥ 2 is a positive integer, N (m,1)(r, aj) denotes the reduced counting
function of those zeros of f(z)−aj with multiplicity m, and of f(z+η)−a with
multiplicity 1. Next in the same manner as in Case 2 we can get a contradiction.

Case 4. Suppose that

(3.53)
3∑

j=1

N (1,1)(r, aj) +
3∑

j=1

N (m,1)(r, aj) +
3∑

j=1

N (1,m)(r, aj) = S(r, f(z)),
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where m ≥ 1 is any positive integer. Then, by (3.53) we get

N

(

r,
1

f(z)

)

=
∑

n≥1

∑

m≥1

N (n,m)(r, 0)

≤
∑

n≤15

∑

m≥1

N (n,m)(r, 0) +
∑

n≥1

∑

m≤15

N (n,m)(r, 0)

+
∑

n≥16

∑

m≥1

N (n,m)(r, 0) +
∑

n≥1

∑

m≥16

N (n,m)(r, 0)

= 2
∑

n≤15

∑

m≤15

N (n,m)(r, 0) +
∑

n≤15

∑

m≥16

N (n,m)(r, 0)

+
∑

n≥16

∑

m≤15

N (n,m)(r, 0) +
∑

n≥16

∑

m≥1

N (n,m)(r, 0)

+
∑

n≥1

∑

m≥16

N (n,m)(r, 0)

≤
2

16

(

N

(

r,
1

f(z)

)

+N

(

r,
1

f(z + η)

))

+ S(r, f(z))

≤
1

8
T (r, f(z)) +

1

8
T (r, f(z + η)) + S(r, f(z)).(3.54)

Similarly, by (3.53) we get

(3.55) N

(

r,
1

f(z)− 1

)

≤
1

8
T (r, f(z)) +

1

8
T (r, f(z + η)) + S(r, f(z))

and

(3.56) N

(

r,
1

f(z)− c

)

≤
1

8
T (r, f(z)) +

1

8
T (r, f(z + η)) + S(r, f(z)).

By Lemma 2.1 we get

2T (r, f(z)) = N(r, f(z)) +N

(

r,
1

f(z)

)

+N

(

r,
1

f(z)− 1

)

+N

(

r,
1

f(z)− c

)

+ S(r, f(z)).(3.57)

By (3.54)-(3.57) we get

2T (r, f(z)) ≤ T (r, f(z)) +
3

8
T (r, f(z)) +

3

8
T (r, f(z + η)) + S(r, f(z)),(3.58)

i.e.,

(3.59) 5T (r, f(z)) ≤ 3T (r, f(z + η)) + S(r, f(z)).

Similarly
5T (r, f(z + η)) ≤ 3T (r, f(z)) + S(r, f(z)),

this together with (3.59) gives

2T (r, f(z)) + 2T (r, f(z + η)) ≤ S(r, f(z)),
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which is impossible. This complete the proof of Theorem 1.3. �

Proof of Theorem 1.4. Suppose that f(z) and f(z + η) are nonconstant poly-
nomials. Then a and b are two distinct complex number, this together with
Lemma 2.13 reveals the conclusion of Theorem 1.4. Next we suppose that f(z)
and f(z+η) are transcendental entire functions and f(z) 6≡ f(z+η). Set (2.1),
(2.2) and (2.3). Then we have (2.4) and (2.7). By Lemma 2.14 we have

(3.60) T (r, ϕ(z)) = S(r, f(z))

and

(3.61) T (r, χ(z)) = S(r, f(z)).

Set

(3.62) H(m,n)(z) = mϕ(z)− nχ(z),

where m and n are some two positive integers. We discuss the following two
cases:

Case 1. Suppose that there exist some two integers m0 and n0 such that
H(m0,n0) = 0. This together with (2.4), (2.7) and (3.62) gives

m0

(
f ′(z)− a′(z)

f(z)− a(z)
−
f ′(z)− b′(z)

f(z)− b(z)

)

= n0

(
f ′(z + η − a′(z)

f(z + η)− a(z)
−
f ′(z + η)− b′(z)

f(z + η)− b(z)

)

for all z ∈ C, which implies that

(3.63)

(
f(z)− b(z)

f(z)− a(z)

)m0

= A0

(
f(z + η)− b(z)

f(z + η)− a(z)

)n0

for all z ∈ C, where A0 is a nonzero constant. By (3.63) and the standard
Valiron-Mokhon’ko lemma (cf. [20]) we deduce

(3.64) m0T (r, f(z)) = n0T (r, f(z + η)) + S(r, f(z)).

By (3.64) we have

(3.65) S(r, f(z)) = S(r, f(z + η)).

By Lemma 2.3, the assumptions of Theorem 1.4 and Nevanlinna’s three small
functions theorem we get

T (r, f(z)) ≤ N

(

r,
1

f(z)− a(z)

)

+N

(

r,
1

f(z)− b(z)

)

+ S(r, f(z))

≤ N

(

r,
1

f(z)− f(z + η)

)

+ S(r, f(z))

≤ T (r, f(z)− f(z + η)) + S(r, f(z))

≤ m(r, f(z + η)) +m

(

r,
f(z)

f(z + η)
− 1

)

+ S(r, f(z))
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≤ T (r, f(z + η)) + S(r, f(z)),

i.e.,

(3.66) T (r, f(z)) ≤ T (r, f(z + η)) + S(r, f(z)).

Similarly,

(3.67) T (r, f(z + η)) ≤ T (r, f(z)) + S(r, f(z)) + S(r, f(z + η)).

By (3.65)-(3.67) we get

(3.68) T (r, f(z)) = T (r, f(z + η)) + S(r, f(z)).

By (3.64) and (3.68) we get m0 = n0, and so it follows by (3.63) that

(3.69)
f(z)− b(z)

f(z)− a(z)
= A1 ·

f(z + η)− b(z)

f(z + η)− a(z)
,

where A1 is a nonzero constant satisfying Am0

1 = A0. By (3.69) and the sup-
position f(z) 6≡ f(z + η) we have A1 6= 1, and so (3.69) can be rewritten
as

f(z)((A1 − 1)f(z + η) + a(z)−A1b(z))

= (A1a(z)− b(z))f(z + η) + (1−A1)a(z)b(z).(3.70)

By (3.70) and Lemma 2.15 we get

(3.71) m(r, (A1 − 1)f(z + η) + a(z)−A1b(z)) = S(r, f(z)).

By (3.68) and (3.71) we get

(3.72) T (r, f(z)) = S(r, f(z)),

which is impossible.

Case 2. Suppose that for any two positive integers m and n, we have

(3.73) H(m,n)(z) 6≡ 0.

Let za be a zero of f(z)−a(z) with multiplicity n, and a zero of f(z+η)−a(z)
with multiplicity m, such that a(za) 6= ∞, b(za) 6= ∞ and a(za) − b(za) 6= 0.
Then, by (2.4), (2.7), (3.62) and by a calculating we can get H(m,n)(za) = 0.
Similarly, if zb be a zero of f(z) − b(z) with multiplicity n, and a zero of
f(z + η) − b(z) with multiplicity m such that a(zb) 6= ∞, b(zb) 6= ∞ and
a(zb) − b(zb) 6= 0, then H(m,n)(zb) = 0. This together with (3.60), (3.61) and
(3.73) gives

N (n,m)(r, a) +N (n,m)(r, b) ≤ N

(

r,
1

H(m,n)(z)

)

+N(r, a(z)) +N(r, b(z))

+N

(

r,
1

a(z)− b(z)

)

≤ T (r,H(m,n)(z)) + S(r, f(z))

≤ T (r, ϕ(z)) + T (r, χ(z)) + S(r, f(z))
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= S(r, f(z)),(3.74)

where and in what follows, N (n,m)(r, a) (N (n,m)(r, b), respectively) denotes the
reduced counting function of those zeros of f(z)−a(z) (f(z)−b(z), respectively)
with multiplicity n, and of f(z + η)− a(z) (f(z + η)− b(z), respectively) with
multiplicity m. By (3.74) we can get

N

(

r,
1

f(z)− a(z)

)

=
∑

n≥1

∑

m≥1

N (n,m)(r, a)

≤
∑

n≤15

∑

m≥1

N (n,m)(r, a) +
∑

n≥1

∑

m≤15

N (n,m)(r, a)

+
∑

n≥16

∑

m≥1

N (n,m)(r, a) +
∑

n≥1

∑

m≥16

N (n,m)(r, a)

= 2
∑

n≤15

∑

m≤15

N (n,m)(r, a) +
∑

n≤15

∑

m≥16

N (n,m)(r, a)

+
∑

n≥16

∑

m≤15

N (n,m)(r, a) +
∑

n≥16

∑

m≥1

N (n,m)(r, a)

+
∑

n≥1

∑

m≥16

N (n,m)(r, a)

≤
2

16

(

N

(

r,
1

f(z)

)

+N

(

r,
1

f(z + η)

))

+ S(r, f(z))

≤
1

8
T (r, f(z)) +

1

8
T (r, f(z + η)) + S(r, f(z)).(3.75)

Similarly,

(3.76) N

(

r,
1

f(z)− b(z)

)

≤
1

8
T (r, f(z)) +

1

8
T (r, f(z + η)) + S(r, f(z)).

Noting that f is a nonconstant entire function of hyper-order ρ2(f) < 1, we
can get by (3.75), (3.76), Lemma 2.3 and Nevanlinna’s three small functions
theorem that

T (r, f(z)) ≤ N

(

r,
1

f(z)− a(z)

)

+N

(

r,
1

f(z)− b(z)

)

+ S(r, f(z))

≤
1

4
T (r, f(z)) +

1

4
T (r, f(z + η)) + S(r, f(z))

≤
1

4
T (r, f(z)) +

1

4
m(r, f(z)) +

1

4
m

(

r,
f(z + η)

f(z)

)

+ S(r, f(z))

≤
1

2
T (r, f(z)) + o

(
T (r, f)

r1−ρ2−ε

)

+ S(r, f(z))

≤
1

2
T (r, f(z)) + S(r, f(z)),
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i.e., T (r, f(z)) = S(r, f(z)), for all r outside of a finite logarithmic measure,
which is impossible. This completes the proof of Theorem 1.4. �

4. Concluding remarks

Regarding Theorems 1.1 and 1.2, we give the following two conjectures:

Conjecture 4.1. If the condition “ρ2(f) < 1” of Theorem 1.1 is replaced with
“ρ(f) = ∞”, then the conclusion of Theorem 1.1 still holds.

Conjecture 4.2. If the condition “ρ(f) <∞” of Theorem 1.2 is replaced with
“ρ(f) = ∞”, then the conclusion of Theorem 1.2 still holds.

Acknowledgements. The authors wish to express their thanks to the referee
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