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ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING

TYPE FOR NON-ARCHIMEDEAN VECTORIAL ENTIRE

FUNCTIONS

Vu Hoai An and Le Quang Ninh

Abstract. We show a class of homogeneous polynomials of Fermat-
Waring type such that for a polynomial P of this class, if P (f1, . . . , fN+1)
= P (g1, . . . , gN+1), where f1, . . . , fN+1; g1, . . . , gN+1 are two families of
linearly independent entire functions, then fi = cgi, i = 1, 2, . . . , N + 1,
where c is a root of unity. As a consequence, we prove that if X is a
hypersurface defined by a homogeneous polynomial in this class, then X

is a unique range set for linearly non-degenerate non-Archimedean holo-
morphic curves.

1. Introduction

The function equation P (f) = P (g), where P is a polynomial, f, g are
functions in some classes, has a long history, dating back to Ritt ([24]). In recent
years the problem of existence or non-existence of solutions to the equation has
investigated by many authors (see [1], [2], [6], [8], [10], [20], [21], [22], [23]). For
the case of entire functions of one variable in a non-Archimedean field, many
interesting results are obtained ([4], [5], [6], [9], [11], [12], [13], [16], [17]).

In this paper we investigated the case of the Fermat-Waring type for non-
Archimedean vectorial entire functions. Namely, we consider the equation:

P (f1, f2, . . . , fN+1) = P (g1, g2, . . . , gN+1),

where P is a polynomial of Fermat-Waring type, and fi, gi are entire functions
in a non-Archimedean field. We show if f1, . . . , fN+1; g1, . . . , gN+1 are two
families of linearly independent entire functions, then fi = cgi, i = 1, 2, . . .,
N + 1, where c is a root of unity. As a consequence, we obtained a class of
unique range sets for linearly non-degenerate non-Archimedean holomorphic
curves.
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Throughout this paper, K will denote an algebraically closed field of char-
acteristic zero, complete for a non-trivial non-Archimedean absolute value de-
noted by | · |. We assume that the reader is familiar with the notations in the
non-Archimedean Nevanlinna theory (see [14]).

Let f be a non-constant meromorphic function on K. For every a ∈ K,
define the function µa

f : K → N by

µa
f (z) =

{

0 if f(z) 6= a

d if f(z) = a with multiplicity d.

A non-Archimedean holomorphic map f is a map f = [f1, . . . , fN+1] : K →
P
N (K), where f1, . . . , fN+1 are non-Archimedean entire functions without com-

mon zeros. The map f̃ = (f1, . . . , fN+1) : K → K
N+1−{0} is called a reduced

representation of f (see [25]).
Let H be a hypersurface of PN (K) such that the image of f is not contained

in H, and H is defined by the equation F = 0. For every z ∈ K set

µf (H, z) = µF◦f̃ (z), µf (H) = µF◦f̃ .

Let us first describe the class of polynomials of Fermat-Waring type consid-
ered in this paper.

A family of q polynomials of N+1 variables are said to be in general position

if no set of N +1 polynomials in this family has common zeros in K
N+1−{0}.

Now let given q linear forms of N + 1 variables (q > N + 1) in general
position:

Li = Li(z1, . . . , zN+1) = αi,1z1 + αi,2z2 + · · ·+ αi,N+1zN+1, i = 1, 2, . . . , q.

Let n,m, be positive integers, m < n, a, b ∈ K, a, b 6= 0.
The following polynomial is called a Yi (m,n)-polynomial:

Y(m,n)(z1, z2) = zn1 − azn−m
1 zm2 + bzn2 .

Now consider q homogeneous polynomials:

P1 = P1(z1, . . . , zN+1) = Y(m,n)(L1, L2) = Ln
1 − aLn−m

1 Lm
2 + bLn

2 ,

and for q ≥ i ≥ 2, set:

Pi = Pi(z1, . . . , zN+1) = Y(m,n)(Pi−1, L
ni−1

i+1 ).

Then we consider the following polynomial of Fermat-Waring type of degree
nq:

(1.1) P (z1, z2, . . . , zN+1) = Pq(z1, . . . , zN+1).

The polynomial P (z1, z2, . . . , zN+1) is called a q-iteration of Yi (m,n)-polyno-
mials.

For entire functions f1, . . . , fN+1; g1, . . . , gN+1 over K we consider the fol-
lowing equation:

(1.2) P (f1, . . . , fN+1) = P (g1, . . . , gN+1).
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Denote by X the hypersurface of Fermat-Waring type in P
N(K), which is de-

fined by the equation

(1.3) P (z1, . . . , zN+1) = 0.

We shall prove the following theorems.

Theorem 1.1. Let P (z1, z2, . . . , zN+1) be a q-iteration of Yi (m,n)-polynomials

n ≥ 2m+ 8, m ≥ 3, and f1, . . . , fN+1; g1, . . . , gN+1 be two families of linearly

independent entire functions over K, satisfying the equation P (f1, . . . , fN+1) =
P (g1, . . . , gN+1). Then gi = cfi, c

nq

= 1, i = 1, . . . , N + 1.

Theorem 1.2. Let f and g be two linearly non-degenerate holomorphic map-

pings from K to P
N (K). Let X be the Fermat-Waring hypersurface defined by

the equation P (z1, . . . , zN+1) = 0, where P (z1, . . . , zN+1) is a q-iteration of Yi

(m,n)-polynomials, and n ≥ 2m + 8, m ≥ 3. Then µf (X) = µg(X) implies

f ≡ g.

The main tool to be used is the non-Archimedean Nevanlinna theory, so we
first recall some basic facts of the theory. More details can be found in [3], [14],
[15], [17], [19].

The authors would like to thank the referee for his/her valuable suggestions.

2. Preliminaries

Let f be a non-constant meromorphic function on K.

The following lemma were proved in [3], see also [14].

Lemma 2.1. Let f be a non-constant meromorphic function on K and let

a1, a2, . . . , aq, q ≥ 2, be distinct points of K. Then

(q − 1)T (r, f) ≤ N(r, f) +

q
∑

i=1

N(r,
1

f − ai
)− log r +O(1).

Let f be a holomorphic curve from K to P
N(K) with reduced representation

f̃ = (f1, . . . , fN+1). Define the characteristic function of f, by

Tf (r) = log ||f ||r, where ||f ||r = max
1≤i≤N+1

|fi|r,

where for an entire function f , denote by |f |r the maximum of |f(z)| for |z| ≤ r.

Let H be a hypersurface of PN (K) such that the image of f is not contained
in H , and H is defined by the equation F = 0. Set

Nf (H, r) = N(r,
1

F (f̃)
), Nk,f (H, r) = Nk(r,

1

F (f̃)
).

Let f be a holomorphic curve from K to P
N (K). Then f is called linearly

non-degenerate if there is not any linear form L of variables z1, . . . , zN+1 such

that L(f̃) = 0, i.e., the image of f is not contained in any hyperplane of PN(K).
Let q,N be positive integers with q ≥ N +1. We say that the hypersurfaces

H1, . . . , Hq of PN(K) are in general position if
⋂N+1

i=1 Hji = ∅ for every subset
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{j1, . . . , jN+1} ⊂ {1, . . . , q}. The following lemmas were proved in [19].

Lemma 2.2. Let f be a linearly non-degenerate holomorphic curve from K to

P
N (K) and H1, . . . , Hq be hyperplanes of PN (K) in general position. Then

(q −N − 1)Tf(r) ≤

q
∑

i=1

NN,f(Hi, r) −
N(N + 1)

2
log r +O(1).

Lemma 2.3. Let f be a non-constant meromorphic function on K and let

a1, a2, . . . , aq, q ≥ 3, be distinct points of K ∪ {∞}. Suppose either f − ai
has no zeros, or all the zeros of the functions f − ai have multiplicity at least

mi, i = 1, . . . , q. Then
q

∑

i=1

(1−
1

mi
) < 2.

3. Functional equations and unique range sets

We first need the following lemmas:

Lemma 3.1. Let d,N ∈ N
∗, qi ∈ N and z

d−qi
i Di(z1, z2, . . . , zN+1) be a family

in general position of homogeneous polynomials with coefficients in K of degree

d such that f
d−qi
i Di(f1, . . . , fN+1) 6≡ 0, 1 ≤ i ≤ N + 1. Suppose

N+1∑

i=1

f
d−qi
i Di(f1, . . . , fN+1) = 0, d ≥ N2 − 1 +

N+1∑

i=1

qi, N > 1.

Then f
d−q1
1 D1(f1, . . . , fN+1), . . . , f

d−qN
N DN (f1, . . . , fN+1) are linearly depen-

dent on K.

Proof. We consider the following possible cases:
Case 1: f1, . . . , fN+1 have no common zeros.

By the hypothesis, zd−qi
i Di(z1, . . . , zN+1) is a family in general position, we

then get

F̃ =
(
f
d−q1
1 D1(f1, f2, . . . , fN+1), . . . , f

d−qN
N DN (f1, f2, . . . , fN+1)

)

which is a reduced representation of the holomorphic curve

F =
[
f
d−q1
1 D1(f1, f2, . . . , fN+1) : · · · : f

d−qN
N DN (f1, f2, . . . , fN+1)

]

from K to P
N−1(K). Assume that F is linearly non-degenerate. By the hy-

pothesis we have

(3.1)

N+1∑

i=1

f
d−qi
i Di(f1, f2, . . . , fN+1) = 0.

We first prove dTf (r) = TF (r) +O(1). Set

Ri(z1, . . . , zN+1) = z
d−qi
i Di(z1, z2, . . . , zN+1), i = 1, . . . , N + 1.



ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING TYPE 1189

From the hypothesis of general position and the Hilbert Nullstellensatz [26] it
implies that for any integer k, 1 ≤ k ≤ N + 1, there is an integer mk ≥ d such
that

zmk

k =

N+1∑

i=1

aik(z1, . . . , zN+1)Ri(z1, . . . , zN+1),

where aik(z1, . . . , zN+1), 1 ≤ i ≤ N + 1, are homogeneous polynomials with
coefficients in K of degree mk − d. Therefore

fmk

k =

N+1∑

i=1

aik(f1, . . . , fN+1)Ri(f1, . . . , fN+1), k = 1, . . . , N + 1.

It implies that

Tf
mk
k

(r) = mkTfk(r) ≤ (mk − d)Tf (r) + max
1≤i≤N+1

TRi(f1,...,fN+1)(r) +O(1),

(3.2) dTf (r) ≤ max
1≤i≤N+1

TRi(f1,...,fN+1)(r) +O(1).

On the other hand,

(3.3) TRi(f1,...,fN+1)(r) = T
f
d−qi
i

Di(f1,f2,...,fN+1)
(r) ≤ dTf (r) +O(1)

for all i = 1, . . . , N + 1.
By (3.2) and (3.3) we have dTf (r) = max

1≤i≤N+1
TRi(f1,...,fN+1)(r)+O(1). There-

fore dTf (r) = TF (r) + O(1). Consider the following hyperplanes in general
position in P

N−1 :

H1 : x1 = 0; H2 : x2 = 0; . . . ;HN : xN = 0; HN+1 : x1 + x2 + · · ·+ xN = 0.

Using Lemma 2.2, and noting that d− qi ≥ N − 1,

NN−1,F (HN+1, r) = NN−1(r,
1

f
d−qN+1

N+1 DN+1(f1, f2, . . . , fN+1)
),

we have

dTf (r) = TF (r) +O(1) ≤

N+1∑

i=1

NN−1,F (Hi, r)−
N(N − 1)

2
log r +O(1)

≤ (N − 1)
N+1∑

i=1

N(r,
1

fi
) +

N+1∑

i=1

N(r,
1

Di(f1, f2, . . . , fN+1)
)

−
N(N − 1)

2
log r +O(1)

≤ (N − 1)(N + 1)Tf (r) +

N+1∑

i=1

qiTf (r)−
N(N − 1)

2
log r +O(1)

≤
(
N2 − 1 +

N+1∑

i=1

qi
)
Tf(r) −

N(N − 1)

2
log r +O(1),
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and
(
d− (N2 − 1)−

N+1∑

i=1

qi
)
Tf (r) +

N(N − 1)

2
log r ≤ O(1).

Because d ≥ N2 − 1 +
∑N+1

i=1 qi, we have a contradiction.

So f
d−q1
1 D1(f1, . . . , fN+1), . . . , f

d−qN
N DN(f1, . . . , fN+1) are linearly depen-

dent on K.

Case 2: f1, . . . , fN+1 have common zeros. Let l be a greatest common divisor
of f1, f2, . . . , fN+1. Write fi = lhi, i = 1, . . . , N + 1. Then h1, . . . , hN+1 have
no common zeros. From (3.1) we obtain

(3.4)

ld
N+1∑

i=1

h
d−qi
i Di(h1, h2, . . . , hN+1) = 0, and

N+1∑

i=1

h
d−qi
i Di(h1, . . . , hN+1) = 0.

By a similar argument as in the proof of Case 1 for (3.4) we get that

h
d−q1
1 D1(h1, . . . , hN+1), . . . , h

d−qN
N DN (h1, . . . , hN+1)

are linearly dependent on K. So

f
d−q1
1 D1(f1, . . . , fN+1), . . . , f

d−qN
N DN (f1, . . . , fN+1)

are linearly dependent on K.

Lemma 3.1 is proved. �

Lemma 3.2. Let n, n1, n2, . . . , nq, q ∈ N
∗, a1, . . . , aq, c ∈ K, c 6= 0, and q ≥

2 +
∑q

i=1
ni

n . Then the functional equation

(f − a1)
n1(f − a2)

n2 · · · (f − aq)
nq = cgn

has no non-constant meromorphic solutions (f, g).

Proof. Suppose that (f, g) is a non-constant meromorphic solution of the equa-
tion:

(f − a1)
n1(f − a2)

n2 · · · (f − aq)
nq = cgn.

From this we see that if z0 ∈ K is a zero of f − ai for some 1 ≤ i ≤ q, then z0
is a zero of g and niµ

ai

f (z0) = nµ0
g(z0). So

N(r,
1

f − ai
) ≤

ni

n
N(r,

1

f − ai
) ≤

ni

n
T (r, f) +O(1).

From this and by Lemma 2.1,

(q − 2)T (r, f) ≤

q
∑

i=1

N(r,
1

f − ai
)− log r +O(1)

≤

q
∑

i=1

ni

n
N(r,

1

f − ai
)− log r +O(1)
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≤

q
∑

i=1

ni

n
T (r, f)− log r +O(1); (q − 2−

q
∑

i=1

ni

n
)T (r, f) + log r

≤ O(1).

Since q ≥ 2 +
∑q

i=1
ni

n , we obtain a contradiction. �

Lemma 3.3. Let n,m ∈ N
∗, n ≥ 2m+ 8, a1, b1, a2, b2, c ∈ K, a1 6= 0, b1 6= 0,

a2 6= 0, b2 6= 0, c 6= 0, and let f1, f2, g1, g2 be non-zero entire functions.

1. Suppose that f1
f2

is a non-constant meromorphic function, and

(3.5) fn
1 + a1f

n−m
1 fm

2 + b1f
n
2 = b2g

n
2 .

Then there exists c1 6= 0 such that c1b2g
n
2 = b1f

n
2 , g2 = hf2 with b1 = c1b2h

n,

h ∈ K.

2. Suppose that f1
f2

and g1
g2

are non-constant meromorphic functions, and

(3.6) fn
1 + a1f

n−m
1 fm

2 + b1f
n
2 = c(gn1 + a2g

n−m
1 gm2 + b2g

n
2 ).

i. If m ≥ 2, then

cb2g
n
2 = b1f

n
2 , g2 = hf2 with b1 = cb2h

n, h ∈ K.

ii. If m ≥ 3, then

g1 = lf1, g2 = hf2 with 1 = cln, a1 = ca2l
n−mhm, b1 = cb2h

n, l, h ∈ K.

Proof. 1. From (3.5) we have

(3.7) fn−m
1 (fm

1 + a1f
m
2 ) + b1f

n
2 − b2g

n
2 = 0.

Note that xn−m
1 (xm

1 + a1x
m
2 ), b1x

n
2 ,−b2x

n
3 are the homogeneous polynomials of

degree n in general position. Since n ≥ 2m+8 and by Lemma 3.1, there exists
c1 6= 0 such that c1b2g

n
2 = b1f

n
2 . Therefore g2 = hf2 with b1 = c1b2h

n, h ∈ K.

2.i. We consider the possible cases:
Case 1: c = 1. Then

(3.8) fn
1 + a1f

n−m
1 fm

2 + b1f
n
2 = gn1 + a2g

n−m
1 gm2 + b2g

n
2 ,

i.e.,

(3.9) b1f
n
2 + fn−m

1 (fm
1 + a1f

m
2 )− b2g

n
2 − gn−m

1 (gm1 + a2g
m
2 ) = 0.

Note that b1x
n
1 , x

n−m
2 (xm

2 + a1x
m
1 ), −b2x

n
3 , −xn−m

4 (xm
4 + a2x

m
3 ) are the homo-

geneous polynomials of degree n in general position. Since n ≥ 2m+ 8 and by
Lemma 3.1, there exist constants C1, C2, C3, (C1, C2, C3) 6= (0, 0, 0), such that

(3.10) C1b1f
n
2 + C2f

n−m
1 (fm

1 + a1f
m
2 ) + C3b2g

n
2 = 0.

We consider the following possible subcases:
Subcase 1: C3 = 0. Then from (3.10) we have

C1b1f
n
2 + C2f

n−m
1 (fm

1 + a1f
m
2 ) = 0.
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Since f2 is a non-zero entire function, we have C2 6= 0. If C1 = 0, then
f1
f2

is a constant, a contradiction. So C1, C2 6= 0. Then f1
f2

is a constant, a

contradiction. So C3 6= 0.
Subcase 2: C2 = 0. Then from (3.10) we have C1b1f

n
2 + C3b2g

n
2 = 0. Because

f2, g2 are non-zero entire functions, we have C1 6= 0, C3 6= 0. From this and
(3.9) it follows that gn2 = −C1b1

C3b2
fn
2 ,

g2
f2

= h, h ∈ K, h 6= 0, and

b1

(

1 +
C1

C3

)

fn
2 + fn−m

1 (fm
1 + a1f

m
2 )− gn−m

1 (gm1 + a2g
m
2 ) = 0,

(3.11) −gn1 + fn−m
1 (fm

1 + a1f
m
2 ) +

(

b1(1 +
C1

C3
)fn−m

2 − a2h
mgn−m

1

)

fm
2 = 0.

Suppose that 1 + C1

C3

6= 0. Then, from the similarity of (3.11) and (3.9), by

a similar argument as in (3.9), there exist constants C′

1, C
′

2, (C
′

1, C
′

2) 6= (0, 0),
such that

(3.12) C′

2g
n
1 + C′

1f
n−m
1 (fm

1 + a1f
m
2 ) = 0.

Since g1 is a non-zero entire function and f1
f2

is not a constant, by (3.12) we

obtain C′

1 6= 0, C′

2 6= 0. We have

C′

1f
n−m
1 (fm

1 + a1f
m
2 ) = −C′

2g
n
1 , C

′

1

(f1

f2

)n

+ C′

1a1

(f1

f2

)n−m

= −C′

2

(g1

f2

)n

,

(3.13) C′

1

(f1

f2

)n−m(

(
f1

f2
)m + a1

)

= −C′

2

(g1

f2

)n

.

Note that the equation zm + a1 = 0 has m distinct roots d1, d2, . . . , dm. Set
f = f1

f2
, g = g1

f2
. Consequently, by (3.13) we have

(3.14) fn−m(f − d1) · · · (f − dm) = Cgn, C 6= 0.

Since f1
f2

is not a constant, neither is g1
f2
. By m ≥ 2, n ≥ 2m + 8 we have

m+1 ≥ 2+ n−m
n +

∑m
i=1

1
n . Then applying Lemma 3.2 to (3.14) with q = m+1,

n = n, n1 = n − m, n2 = 1 = n3 = · · · = nm, we have a contradiction. So
1 + C1

C3

= 0. Therefore cb2g
n
2 = b1f

n
2 , and g2 = hf2 with b1 = cb2h

n.

Subcase 3. C1 = 0. From (3.10) we have C2f
n−m
1 (fm

1 + a1f
m
2 ) + C3b2g

n
2 = 0.

Then, from the similarity of this equation and (3.12), by a similar argument as
in (3.12) we have a contradiction.
Subcase 4. C1 6= 0, C2 6= 0, C3 6= 0.

By a similar argument as in (3.7) we obtain a contradiction. So b2g
n
2 =

b1f
n
2 , g2 = hf2, h ∈ K, h 6= 0, with b1 = b2h

n.

Case 2. c 6= 1. Set bn = c, e1 = bg1, e2 = bg2. From this and (3.6) we get

fn
1 + a1f

n−m
1 fm

2 + b1f
n
2 = en1 + a2e

n−m
1 em2 + b2e

n
2 .

Applying the case with c = 1 here we obtain b2e
n
2 = b2b

ngn2 = b2cg
n
2 =

b1f
n
2 , g2 = hf2 with b1 = cb2h

n.



ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING TYPE 1193

2.ii. m ≥ 3. From (3.6) we have

b1f
n
2 (

1

b1
fn +

a1

b1
fn−m + 1) = cb2g

n
2 (

1

b2
gn +

a2

b2
gn−m + 1),

where f = f1
f2
, g = g1

g2
. Set 1

b1
= a3,

a1

b1
= b3,

1
b2

= a4,
a2

b2
= b4. Since

cb2g
n
2 = b1f

n
2 ,

a3f
n + b3f

n−m = a4g
n + b4g

n−m.

Set h1 = g
f . From this we obtain

a3f
m + b3 = a4(

g

f
)
n
fm + b4(

g

f
)
n−m

, a3f
m + b3 = a4h

n
1f

m + b4h
n−m
1 ,

(3.15) fm(a3 − a4h
n
1 ) = b4h

n−m
1 − b3,−

a4(h
n
1 − a3

a4

)

b4(h
n−m
1 − b3

b4
)
= (

1

f
)m.

Assume that h1 is not a constant. Note that the equation zn − a3

a4

= 0 has n

simple roots, the equation zn−m − b3
b4

= 0 has n − m simple roots. Then the

equations zn− a3

a4

= 0, zn−m− b3
b4

= 0 have at most n−m common simple roots.

Therefore the equation zn − a3

a4

= 0 has at least m distinct roots, which are

not roots of the equation zn−m − b3
b4

= 0. Let r1, r2, . . . , rm be all these roots.

Then, from (3.15) we see that all the simple zeros of the equations h1 − rj ,
j = 1, . . . ,m, have multiplicities ≥ m. By Lemma 2.3 we have m(1 − 1

m ) < 2.
Therefore 0 < m < 3. From m ≥ 3, we obtain a contradiction. Thus h1 is
constant and so is g1 = lf1 . Consequently, g1 = lf1, g2 = hf2. From that and
since f1

f2
is not a constant we obtain 1 = cln, a1 = ca2l

n−mhm, b1 = cb2h
n. �

Now we use the above lemmas to prove the main result of the paper.

Proof of Theorem 1.1. Set Li(f̃)= Li(f1, . . . , fN+1), Li(g̃)= Li(g1, . . . , gN+1),

i = 1, . . . , q, Pi(f̃) = Pi(f1, . . . , fN+1), Pi(g̃) = Pi(g1, . . . , gN+1), i = 1, . . . , q.

We first prove Pi(f̃) 6≡ 0, i = 1, 2, . . . , q; q > N, by induction on i. With i = 1
assume that

P1(f̃) = Ln
1 (f̃)− aLn−m

1 (f̃)Lm
2 (f̃) + bLn

2 (f̃) ≡ 0.

It follows from this and Ln
2 (f̃) 6≡ 0 that L1(f̃)

L2(f̃)
is a constant, and we have a

contradiction to the linearly independence of f1, . . . , fN+1. With i = 2, assume
that

P2(f̃) = Pn
1 (f̃)− aPn−m

1 (f̃)Lnm
3 (f̃) + bLn2

3 (f̃) ≡ 0.

Since P1(f̃) 6≡ 0, Ln
3 (f̃) 6≡ 0 we see that P1(f̃)

Ln
3
(f̃)

is a constant. Hence

Ln
1 (f̃)− aLn−m

1 (f̃)Lm
2 (f̃) + bLn

2 (f̃)−ALn
3 (f̃) ≡ 0, A 6= 0.

Since L1(f̃) 6≡ 0, L2(f̃) 6≡ 0, L3(f̃) 6≡ 0 and n ≥ 2m + 8, m ≥ 3, we deduce

from Lemma 3.3 that L2(f̃)

L3(f̃)
is a constant, and we have a contradiction to the

linearly independence of f1, . . . , fN+1.
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Now we consider Pi(f̃) ≡ 0. Then

(3.16) Pn
i−1(f̃)− aPn−m

i−1 (f̃)Lni−1m
i+1 (f̃) + bLni

i+1(f̃) ≡ 0.

Applying the induction hypothesis and by a similar argument as above we have
a contradiction.

Next we consider

(3.17) Pi(f̃) = AiPi(g̃), Ai 6= 0, i = 1, 2, . . . , q.

We will show that Lj(g̃) = cjLj(f̃), cj 6= 0, j = 1, . . . , i + 1, by induction on

i. With i = 1 we get P1(f̃) = A1P1(g̃),

Ln
1 (f̃)− aLn−m

1 (f̃)Lm
2 (f̃) + bLn

2 (f̃) = A1(L
n
1 (g̃)− aLn−m

1 (g̃)Lm
2 (g̃) + bLn

2 (g̃)).

Since L1(f̃) 6≡ 0, L2(f̃) 6≡ 0, L1(g̃) 6≡ 0, L2(g̃) 6≡ 0 and n ≥ 2m+ 8, m ≥ 3, we

deduce from Lemma 3.3 and the above equation that Lj(g̃) = cjLj(f̃), cj 6=
0, j = 1, 2. Now we consider (3.17). Then

(3.18)
Pn
i−1(f̃)− aPn−m

i−1 (f̃)Lni−1m
i+1 (f̃) + bLni

i+1(f̃)

= Ai(P
n
i−1(g̃)− aPn−m

i−1 (g̃)Lni−1m
i+1 (g̃) + bLni

i+1(g̃)).

Since Pi−1(f̃) 6≡ 0, Li+1(f̃) 6≡ 0, Pi−1(g̃) 6≡ 0, Li+1(g̃) 6≡ 0 and n ≥ 2m + 8,
m ≥ 3, we deduce from Lemma 3.3 and (3.18) that

Pi−1(f̃) = Bi−1Pi−1(g̃), L
ni−1

i+1 (g̃) = Ci+1L
ni−1

i+1 (f̃).

Applying the induction hypothesis here we have Lj(g̃) = cjLj(f̃), cj 6= 0,
j = 1, 2, . . . , i+ 1.

Now we can return to the proof of Theorem 1.1. Consider

(3.19) P (f̃) = P (g̃), q > N.

From (3.17) we get Li(g̃) = ciLi(f̃), ci 6= 0, i = 1, . . . , q + 1. Since Li, i =
1, . . . , N + 1, are linearly independent and L1, . . . , LN+1, Lj, j ∈ {N + 2, . . .,
q + 1} are linearly dependent we get

Lj = b1jL1 + b2jL2 + · · ·+ bN+1jLN+1, bkj 6= 0, k = 1, . . . , N + 1,

j = N + 2, . . . , q + 1;

Lj(f̃) = b1jL1(f̃) + b2jL2(f̃) + · · ·+ bN+1jLN+1(f̃), j = N + 2, . . . , q + 1;

Lj(g̃) = b1jL1(g̃) + b2jL2(g̃) + · · ·+ bN+1jLN+1(g̃), j = N + 2, . . . , q + 1.

From this and Li(g̃) = ciLi(f̃), ci 6= 0, i = 1, 2, . . . , N + 1; Lj(g̃) = cjLj(f̃),
we obtain

Lj(g̃) = c1b1jL1(f̃) + c2b2jL2(f̃) + · · ·+ cN+1bN+1jLN+1(f̃);

c1b1jL1(f̃) + c2b2jL2(f̃) + · · ·+ cN+1bN+1jLN+1(f̃)

= cjb1jL1(f̃) + cjb2jL2(f̃) + · · ·+ cjbN+1jLN+1(f̃), j = N + 2, . . . , q + 1.
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By the linear independence of f1, . . . , fN+1 we obtain cj = c1 = cj = c2 =
· · · = cN+1, j = N + 2, . . . , q + 1. Set c = ci, i = 1, . . . , q + 1. Then Lj(g̃) =

cLj(f̃), j = 1, . . . , q + 1. Then gi = cfi, i = 1, . . . , N + 1, cn
q

= 1. �

Now we are going to complete the proof of Theorem 1.2

Proof of Theorem 1.2. Let f̃ = (f1, . . . , fN+1) and g̃ = (g1, . . . , gN+1) be re-
duced representations of f and g, respectively.

Since µf (X) = µg(X), it is easy to see that there exists a non-zero constant

c such that P (f̃) = cP (g̃). Set ln
q

= c and h̃ = (lg1, . . . , lgN+1). Then h̃ is a

reduced representation of g and Pq(f̃) = Pq(h̃). By Theorem 1.1, f ≡ g. �
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