ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING TYPE FOR NON-ARCHIMEDEAN VECTORIAL ENTIRE FUNCTIONS

Vu Hoai An and Le Quang Ninh

Abstract

We show a class of homogeneous polynomials of FermatWaring type such that for a polynomial P of this class, if $P\left(f_{1}, \ldots, f_{N+1}\right)$ $=P\left(g_{1}, \ldots, g_{N+1}\right)$, where $f_{1}, \ldots, f_{N+1} ; g_{1}, \ldots, g_{N+1}$ are two families of linearly independent entire functions, then $f_{i}=c g_{i}, i=1,2, \ldots, N+1$, where c is a root of unity. As a consequence, we prove that if X is a hypersurface defined by a homogeneous polynomial in this class, then X is a unique range set for linearly non-degenerate non-Archimedean holomorphic curves.

1. Introduction

The function equation $P(f)=P(g)$, where P is a polynomial, f, g are functions in some classes, has a long history, dating back to Ritt ([24]). In recent years the problem of existence or non-existence of solutions to the equation has investigated by many authors (see [1], [2], [6], [8], [10], [20], [21], [22], [23]). For the case of entire functions of one variable in a non-Archimedean field, many interesting results are obtained ([4], [5], [6], [9], [11], [12], [13], [16], [17]).

In this paper we investigated the case of the Fermat-Waring type for nonArchimedean vectorial entire functions. Namely, we consider the equation:

$$
P\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)=P\left(g_{1}, g_{2}, \ldots, g_{N+1}\right),
$$

where P is a polynomial of Fermat-Waring type, and f_{i}, g_{i} are entire functions in a non-Archimedean field. We show if $f_{1}, \ldots, f_{N+1} ; g_{1}, \ldots, g_{N+1}$ are two families of linearly independent entire functions, then $f_{i}=c g_{i}, i=1,2, \ldots$, $N+1$, where c is a root of unity. As a consequence, we obtained a class of unique range sets for linearly non-degenerate non-Archimedean holomorphic curves.

Received July 27, 2015; Revised November 3, 2015.
2010 Mathematics Subject Classification. 11D88, 30D35.
Key words and phrases. Diophantine equations, non-Archimedean field, unique range sets, holomorphic curves.

The work was supported by a NAFOSTED grant.

Throughout this paper, \mathbb{K} will denote an algebraically closed field of characteristic zero, complete for a non-trivial non-Archimedean absolute value denoted by $|\cdot|$. We assume that the reader is familiar with the notations in the non-Archimedean Nevanlinna theory (see [14]).

Let f be a non-constant meromorphic function on \mathbb{K}. For every $a \in \mathbb{K}$, define the function $\mu_{f}^{a}: \mathbb{K} \rightarrow \mathbb{N}$ by

$$
\mu_{f}^{a}(z)=\left\{\begin{array}{ll}
0 & \text { if } f(z) \neq a \\
d & \text { if } f(z)=a
\end{array} \text { with multiplicity } d .\right.
$$

A non-Archimedean holomorphic map f is a map $f=\left[f_{1}, \ldots, f_{N+1}\right]: \mathbb{K} \rightarrow$ $\mathbb{P}^{N}(\mathbb{K})$, where f_{1}, \ldots, f_{N+1} are non-Archimedean entire functions without common zeros. The map $\tilde{f}=\left(f_{1}, \ldots, f_{N+1}\right): \mathbb{K} \rightarrow \mathbb{K}^{N+1}-\{0\}$ is called a reduced representation of f (see [25]).

Let H be a hypersurface of $\mathbb{P}^{N}(\mathbb{K})$ such that the image of f is not contained in H, and H is defined by the equation $F=0$. For every $z \in \mathbb{K}$ set

$$
\mu_{f}(H, z)=\mu_{F \circ \tilde{f}}(z), \mu_{f}(H)=\mu_{F \circ \tilde{f}}
$$

Let us first describe the class of polynomials of Fermat-Waring type considered in this paper.

A family of q polynomials of $N+1$ variables are said to be in general position if no set of $N+1$ polynomials in this family has common zeros in $\mathbb{K}^{N+1}-\{0\}$.

Now let given q linear forms of $N+1$ variables $(q>N+1)$ in general position:

$$
L_{i}=L_{i}\left(z_{1}, \ldots, z_{N+1}\right)=\alpha_{i, 1} z_{1}+\alpha_{i, 2} z_{2}+\cdots+\alpha_{i, N+1} z_{N+1}, i=1,2, \ldots, q
$$

Let n, m, be positive integers, $m<n, a, b \in \mathbb{K}, a, b \neq 0$.
The following polynomial is called a $Y i(m, n)$-polynomial:

$$
Y_{(m, n)}\left(z_{1}, z_{2}\right)=z_{1}^{n}-a z_{1}^{n-m} z_{2}^{m}+b z_{2}^{n}
$$

Now consider q homogeneous polynomials:

$$
P_{1}=P_{1}\left(z_{1}, \ldots, z_{N+1}\right)=Y_{(m, n)}\left(L_{1}, L_{2}\right)=L_{1}^{n}-a L_{1}^{n-m} L_{2}^{m}+b L_{2}^{n},
$$

and for $q \geq i \geq 2$, set:

$$
P_{i}=P_{i}\left(z_{1}, \ldots, z_{N+1}\right)=Y_{(m, n)}\left(P_{i-1}, L_{i+1}^{n^{i-1}}\right)
$$

Then we consider the following polynomial of Fermat-Waring type of degree n^{q} :

$$
\begin{equation*}
P\left(z_{1}, z_{2}, \ldots, z_{N+1}\right)=P_{q}\left(z_{1}, \ldots, z_{N+1}\right) . \tag{1.1}
\end{equation*}
$$

The polynomial $P\left(z_{1}, z_{2}, \ldots, z_{N+1}\right)$ is called a q-iteration of $Y i(m, n)$-polynomials.

For entire functions $f_{1}, \ldots, f_{N+1} ; g_{1}, \ldots, g_{N+1}$ over \mathbb{K} we consider the following equation:

$$
\begin{equation*}
P\left(f_{1}, \ldots, f_{N+1}\right)=P\left(g_{1}, \ldots, g_{N+1}\right) \tag{1.2}
\end{equation*}
$$

Denote by X the hypersurface of Fermat-Waring type in $\mathbb{P}^{N}(\mathbb{K})$, which is defined by the equation

$$
\begin{equation*}
P\left(z_{1}, \ldots, z_{N+1}\right)=0 \tag{1.3}
\end{equation*}
$$

We shall prove the following theorems.
Theorem 1.1. Let $P\left(z_{1}, z_{2}, \ldots, z_{N+1}\right)$ be a q-iteration of $Y i(m, n)$-polynomials $n \geq 2 m+8, m \geq 3$, and $f_{1}, \ldots, f_{N+1} ; g_{1}, \ldots, g_{N+1}$ be two families of linearly independent entire functions over \mathbb{K}, satisfying the equation $P\left(f_{1}, \ldots, f_{N+1}\right)=$ $P\left(g_{1}, \ldots, g_{N+1}\right)$. Then $g_{i}=c f_{i}, c^{n^{q}}=1, i=1, \ldots, N+1$.
Theorem 1.2. Let f and g be two linearly non-degenerate holomorphic mappings from \mathbb{K} to $\mathbb{P}^{N}(\mathbb{K})$. Let X be the Fermat-Waring hypersurface defined by the equation $P\left(z_{1}, \ldots, z_{N+1}\right)=0$, where $P\left(z_{1}, \ldots, z_{N+1}\right)$ is a q-iteration of Yi (m, n)-polynomials, and $n \geq 2 m+8, m \geq 3$. Then $\mu_{f}(X)=\mu_{g}(X)$ implies $f \equiv g$.

The main tool to be used is the non-Archimedean Nevanlinna theory, so we first recall some basic facts of the theory. More details can be found in [3], [14], [15], [17], [19].

The authors would like to thank the referee for his/her valuable suggestions.

2. Preliminaries

Let f be a non-constant meromorphic function on \mathbb{K}.
The following lemma were proved in [3], see also [14].
Lemma 2.1. Let f be a non-constant meromorphic function on \mathbb{K} and let $a_{1}, a_{2}, \ldots, a_{q}, q \geq 2$, be distinct points of \mathbb{K}. Then

$$
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)-\log r+O(1)
$$

Let f be a holomorphic curve from \mathbb{K} to $\mathbb{P}^{N}(\mathbb{K})$ with reduced representation $\tilde{f}=\left(f_{1}, \ldots, f_{N+1}\right)$. Define the characteristic function of f, by

$$
T_{f}(r)=\log \|f\|_{r}, \quad \text { where } \quad\|f\|_{r}=\max _{1 \leq i \leq N+1}\left|f_{i}\right|_{r},
$$

where for an entire function f, denote by $|f|_{r}$ the maximum of $|f(z)|$ for $|z| \leq r$.
Let H be a hypersurface of $\mathbb{P}^{N}(\mathbb{K})$ such that the image of f is not contained in H, and H is defined by the equation $F=0$. Set

$$
N_{f}(H, r)=N\left(r, \frac{1}{F(\tilde{f})}\right), \quad N_{k, f}(H, r)=N_{k}\left(r, \frac{1}{F(\tilde{f})}\right) .
$$

Let f be a holomorphic curve from \mathbb{K} to $\mathbb{P}^{N}(\mathbb{K})$. Then f is called linearly non-degenerate if there is not any linear form L of variables z_{1}, \ldots, z_{N+1} such that $L(\tilde{f})=0$, i.e., the image of f is not contained in any hyperplane of $\mathbb{P}^{N}(\mathbb{K})$.

Let q, N be positive integers with $q \geq N+1$. We say that the hypersurfaces H_{1}, \ldots, H_{q} of $\mathbb{P}^{N}(\mathbb{K})$ are in general position if $\bigcap_{i=1}^{N+1} H_{j_{i}}=\emptyset$ for every subset
$\left\{j_{1}, \ldots, j_{N+1}\right\} \subset\{1, \ldots, q\}$. The following lemmas were proved in [19].
Lemma 2.2. Let f be a linearly non-degenerate holomorphic curve from \mathbb{K} to $\mathbb{P}^{N}(\mathbb{K})$ and H_{1}, \ldots, H_{q} be hyperplanes of $\mathbb{P}^{N}(\mathbb{K})$ in general position. Then

$$
(q-N-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{N, f}\left(H_{i}, r\right)-\frac{N(N+1)}{2} \log r+O(1)
$$

Lemma 2.3. Let f be a non-constant meromorphic function on \mathbb{K} and let $a_{1}, a_{2}, \ldots, a_{q}, q \geq 3$, be distinct points of $\mathbb{K} \cup\{\infty\}$. Suppose either $f-a_{i}$ has no zeros, or all the zeros of the functions $f-a_{i}$ have multiplicity at least $m_{i}, i=1, \ldots, q$. Then

$$
\sum_{i=1}^{q}\left(1-\frac{1}{m_{i}}\right)<2
$$

3. Functional equations and unique range sets

We first need the following lemmas:
Lemma 3.1. Let $d, N \in \mathbb{N}^{*}, q_{i} \in \mathbb{N}$ and $z_{i}^{d-q_{i}} D_{i}\left(z_{1}, z_{2}, \ldots, z_{N+1}\right)$ be a family in general position of homogeneous polynomials with coefficients in \mathbb{K} of degree d such that $f_{i}^{d-q_{i}} D_{i}\left(f_{1}, \ldots, f_{N+1}\right) \not \equiv 0,1 \leq i \leq N+1$. Suppose

$$
\sum_{i=1}^{N+1} f_{i}^{d-q_{i}} D_{i}\left(f_{1}, \ldots, f_{N+1}\right)=0, d \geq N^{2}-1+\sum_{i=1}^{N+1} q_{i}, N>1
$$

Then $f_{1}^{d-q_{1}} D_{1}\left(f_{1}, \ldots, f_{N+1}\right), \ldots, f_{N}^{d-q_{N}} D_{N}\left(f_{1}, \ldots, f_{N+1}\right)$ are linearly dependent on \mathbb{K}.

Proof. We consider the following possible cases:
Case 1: f_{1}, \ldots, f_{N+1} have no common zeros.
By the hypothesis, $z_{i}^{d-q_{i}} D_{i}\left(z_{1}, \ldots, z_{N+1}\right)$ is a family in general position, we then get

$$
\tilde{F}=\left(f_{1}^{d-q_{1}} D_{1}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right), \ldots, f_{N}^{d-q_{N}} D_{N}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)\right)
$$

which is a reduced representation of the holomorphic curve

$$
F=\left[f_{1}^{d-q_{1}} D_{1}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right): \cdots: f_{N}^{d-q_{N}} D_{N}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)\right]
$$

from \mathbb{K} to $\mathbb{P}^{N-1}(\mathbb{K})$. Assume that F is linearly non-degenerate. By the hypothesis we have

$$
\begin{equation*}
\sum_{i=1}^{N+1} f_{i}^{d-q_{i}} D_{i}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)=0 \tag{3.1}
\end{equation*}
$$

We first prove $d T_{f}(r)=T_{F}(r)+O(1)$. Set

$$
R_{i}\left(z_{1}, \ldots, z_{N+1}\right)=z_{i}^{d-q_{i}} D_{i}\left(z_{1}, z_{2}, \ldots, z_{N+1}\right), i=1, \ldots, N+1
$$

From the hypothesis of general position and the Hilbert Nullstellensatz [26] it implies that for any integer $k, 1 \leq k \leq N+1$, there is an integer $m_{k} \geq d$ such that

$$
z_{k}^{m_{k}}=\sum_{i=1}^{N+1} a_{i_{k}}\left(z_{1}, \ldots, z_{N+1}\right) R_{i}\left(z_{1}, \ldots, z_{N+1}\right)
$$

where $a_{i_{k}}\left(z_{1}, \ldots, z_{N+1}\right), 1 \leq i \leq N+1$, are homogeneous polynomials with coefficients in \mathbb{K} of degree $m_{k}-d$. Therefore

$$
f_{k}^{m_{k}}=\sum_{i=1}^{N+1} a_{i_{k}}\left(f_{1}, \ldots, f_{N+1}\right) R_{i}\left(f_{1}, \ldots, f_{N+1}\right), k=1, \ldots, N+1
$$

It implies that

$$
\begin{align*}
& T_{f_{k}^{m_{k}}}(r)=m_{k} T_{f_{k}}(r) \leq\left(m_{k}-d\right) T_{f}(r)+\max _{1 \leq i \leq N+1} T_{R_{i}\left(f_{1}, \ldots, f_{N+1}\right)}(r)+O(1), \\
& 3.2) \quad d T_{f}(r) \leq \max _{1 \leq i \leq N+1} T_{R_{i}\left(f_{1}, \ldots, f_{N+1}\right)}(r)+O(1) . \tag{3.2}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
T_{R_{i}\left(f_{1}, \ldots, f_{N+1}\right)}(r)=T_{f_{i}^{d-q_{i}} D_{i}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)}(r) \leq d T_{f}(r)+O(1) \tag{3.3}
\end{equation*}
$$

for all $i=1, \ldots, N+1$.
By (3.2) and (3.3) we have $d T_{f}(r)=\max _{1 \leq i \leq N+1} T_{R_{i}\left(f_{1}, \ldots, f_{N+1}\right)}(r)+O(1)$. Therefore $d T_{f}(r)=T_{F}(r)+O(1)$. Consider the following hyperplanes in general position in \mathbb{P}^{N-1} :

$$
H_{1}: x_{1}=0 ; H_{2}: x_{2}=0 ; \ldots ; H_{N}: x_{N}=0 ; \quad H_{N+1}: x_{1}+x_{2}+\cdots+x_{N}=0
$$

Using Lemma 2.2, and noting that $d-q_{i} \geq N-1$,

$$
N_{N-1, F}\left(H_{N+1}, r\right)=N_{N-1}\left(r, \frac{1}{f_{N+1}^{d-q_{N+1}} D_{N+1}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)}\right),
$$

we have

$$
\begin{aligned}
d T_{f}(r)= & T_{F}(r)+O(1) \leq \sum_{i=1}^{N+1} N_{N-1, F}\left(H_{i}, r\right)-\frac{N(N-1)}{2} \log r+O(1) \\
\leq & (N-1) \sum_{i=1}^{N+1} N\left(r, \frac{1}{f_{i}}\right)+\sum_{i=1}^{N+1} N\left(r, \frac{1}{D_{i}\left(f_{1}, f_{2}, \ldots, f_{N+1}\right)}\right) \\
& -\frac{N(N-1)}{2} \log r+O(1) \\
\leq & (N-1)(N+1) T_{f}(r)+\sum_{i=1}^{N+1} q_{i} T_{f}(r)-\frac{N(N-1)}{2} \log r+O(1) \\
\leq & \left(N^{2}-1+\sum_{i=1}^{N+1} q_{i}\right) T_{f}(r)-\frac{N(N-1)}{2} \log r+O(1)
\end{aligned}
$$

and

$$
\left(d-\left(N^{2}-1\right)-\sum_{i=1}^{N+1} q_{i}\right) T_{f}(r)+\frac{N(N-1)}{2} \log r \leq O(1)
$$

Because $d \geq N^{2}-1+\sum_{i=1}^{N+1} q_{i}$, we have a contradiction.
So $f_{1}^{d-q_{1}} D_{1}\left(f_{1}, \ldots, f_{N+1}\right), \ldots, f_{N}^{d-q_{N}} D_{N}\left(f_{1}, \ldots, f_{N+1}\right)$ are linearly dependent on \mathbb{K}.
Case 2: f_{1}, \ldots, f_{N+1} have common zeros. Let l be a greatest common divisor of $f_{1}, f_{2}, \ldots, f_{N+1}$. Write $f_{i}=l h_{i}, i=1, \ldots, N+1$. Then h_{1}, \ldots, h_{N+1} have no common zeros. From (3.1) we obtain

$$
\begin{align*}
& l^{d} \sum_{i=1}^{N+1} h_{i}^{d-q_{i}} D_{i}\left(h_{1}, h_{2}, \ldots, h_{N+1}\right)=0, \text { and } \tag{3.4}\\
& \sum_{i=1}^{N+1} h_{i}^{d-q_{i}} D_{i}\left(h_{1}, \ldots, h_{N+1}\right)=0 .
\end{align*}
$$

By a similar argument as in the proof of Case 1 for (3.4) we get that

$$
h_{1}^{d-q_{1}} D_{1}\left(h_{1}, \ldots, h_{N+1}\right), \ldots, h_{N}^{d-q_{N}} D_{N}\left(h_{1}, \ldots, h_{N+1}\right)
$$

are linearly dependent on \mathbb{K}. So

$$
f_{1}^{d-q_{1}} D_{1}\left(f_{1}, \ldots, f_{N+1}\right), \ldots, f_{N}^{d-q_{N}} D_{N}\left(f_{1}, \ldots, f_{N+1}\right)
$$

are linearly dependent on \mathbb{K}.
Lemma 3.1 is proved.
Lemma 3.2. Let $n, n_{1}, n_{2}, \ldots, n_{q}, q \in \mathbb{N}^{*}, a_{1}, \ldots, a_{q}, c \in \mathbb{K}, c \neq 0$, and $q \geq$ $2+\sum_{i=1}^{q} \frac{n_{i}}{n}$. Then the functional equation

$$
\left(f-a_{1}\right)^{n_{1}}\left(f-a_{2}\right)^{n_{2}} \cdots\left(f-a_{q}\right)^{n_{q}}=c g^{n}
$$

has no non-constant meromorphic solutions (f, g).
Proof. Suppose that (f, g) is a non-constant meromorphic solution of the equation:

$$
\left(f-a_{1}\right)^{n_{1}}\left(f-a_{2}\right)^{n_{2}} \cdots\left(f-a_{q}\right)^{n_{q}}=c g^{n} .
$$

From this we see that if $z_{0} \in \mathbb{K}$ is a zero of $f-a_{i}$ for some $1 \leq i \leq q$, then z_{0} is a zero of g and $n_{i} \mu_{f}^{a_{i}}\left(z_{0}\right)=n \mu_{g}^{0}\left(z_{0}\right)$. So

$$
\bar{N}\left(r, \frac{1}{f-a_{i}}\right) \leq \frac{n_{i}}{n} N\left(r, \frac{1}{f-a_{i}}\right) \leq \frac{n_{i}}{n} T(r, f)+O(1)
$$

From this and by Lemma 2.1,

$$
\begin{aligned}
(q-2) T(r, f) & \leq \sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)-\log r+O(1) \\
& \leq \sum_{i=1}^{q} \frac{n_{i}}{n} N\left(r, \frac{1}{f-a_{i}}\right)-\log r+O(1)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{q} \frac{n_{i}}{n} T(r, f)-\log r+O(1) ;\left(q-2-\sum_{i=1}^{q} \frac{n_{i}}{n}\right) T(r, f)+\log r \\
& \leq O(1)
\end{aligned}
$$

Since $q \geq 2+\sum_{i=1}^{q} \frac{n_{i}}{n}$, we obtain a contradiction.
Lemma 3.3. Let $n, m \in \mathbb{N}^{*}, n \geq 2 m+8, a_{1}, b_{1}, a_{2}, b_{2}, c \in \mathbb{K}, a_{1} \neq 0, b_{1} \neq 0$, $a_{2} \neq 0, b_{2} \neq 0, c \neq 0$, and let $f_{1}, f_{2}, g_{1}, g_{2}$ be non-zero entire functions.

1. Suppose that $\frac{f_{1}}{f_{2}}$ is a non-constant meromorphic function, and

$$
\begin{equation*}
f_{1}^{n}+a_{1} f_{1}^{n-m} f_{2}^{m}+b_{1} f_{2}^{n}=b_{2} g_{2}^{n} . \tag{3.5}
\end{equation*}
$$

Then there exists $c_{1} \neq 0$ such that $c_{1} b_{2} g_{2}^{n}=b_{1} f_{2}^{n}, g_{2}=h f_{2}$ with $b_{1}=c_{1} b_{2} h^{n}$, $h \in \mathbb{K}$.
2. Suppose that $\frac{f_{1}}{f_{2}}$ and $\frac{g_{1}}{g_{2}}$ are non-constant meromorphic functions, and

$$
\begin{equation*}
f_{1}^{n}+a_{1} f_{1}^{n-m} f_{2}^{m}+b_{1} f_{2}^{n}=c\left(g_{1}^{n}+a_{2} g_{1}^{n-m} g_{2}^{m}+b_{2} g_{2}^{n}\right) \tag{3.6}
\end{equation*}
$$

i. If $m \geq 2$, then

$$
c b_{2} g_{2}^{n}=b_{1} f_{2}^{n}, g_{2}=h f_{2} \text { with } b_{1}=c b_{2} h^{n}, h \in \mathbb{K}
$$

ii. If $m \geq 3$, then

$$
g_{1}=l f_{1}, g_{2}=h f_{2} \text { with } 1=c l^{n}, a_{1}=c a_{2} l^{n-m} h^{m}, b_{1}=c b_{2} h^{n}, l, h \in \mathbb{K}
$$

Proof. 1. From (3.5) we have

$$
\begin{equation*}
f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)+b_{1} f_{2}^{n}-b_{2} g_{2}^{n}=0 \tag{3.7}
\end{equation*}
$$

Note that $x_{1}^{n-m}\left(x_{1}^{m}+a_{1} x_{2}^{m}\right), b_{1} x_{2}^{n},-b_{2} x_{3}^{n}$ are the homogeneous polynomials of degree n in general position. Since $n \geq 2 m+8$ and by Lemma 3.1, there exists $c_{1} \neq 0$ such that $c_{1} b_{2} g_{2}^{n}=b_{1} f_{2}^{n}$. Therefore $g_{2}=h f_{2}$ with $b_{1}=c_{1} b_{2} h^{n}, h \in \mathbb{K}$.
2.i. We consider the possible cases:

Case 1: $c=1$. Then

$$
\begin{equation*}
f_{1}^{n}+a_{1} f_{1}^{n-m} f_{2}^{m}+b_{1} f_{2}^{n}=g_{1}^{n}+a_{2} g_{1}^{n-m} g_{2}^{m}+b_{2} g_{2}^{n} \tag{3.8}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
b_{1} f_{2}^{n}+f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)-b_{2} g_{2}^{n}-g_{1}^{n-m}\left(g_{1}^{m}+a_{2} g_{2}^{m}\right)=0 \tag{3.9}
\end{equation*}
$$

Note that $b_{1} x_{1}^{n}, x_{2}^{n-m}\left(x_{2}^{m}+a_{1} x_{1}^{m}\right),-b_{2} x_{3}^{n},-x_{4}^{n-m}\left(x_{4}^{m}+a_{2} x_{3}^{m}\right)$ are the homogeneous polynomials of degree n in general position. Since $n \geq 2 m+8$ and by Lemma 3.1, there exist constants $C_{1}, C_{2}, C_{3},\left(C_{1}, C_{2}, C_{3}\right) \neq(0,0,0)$, such that

$$
\begin{equation*}
C_{1} b_{1} f_{2}^{n}+C_{2} f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)+C_{3} b_{2} g_{2}^{n}=0 \tag{3.10}
\end{equation*}
$$

We consider the following possible subcases:
Subcase 1: $C_{3}=0$. Then from (3.10) we have

$$
C_{1} b_{1} f_{2}^{n}+C_{2} f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)=0
$$

Since f_{2} is a non-zero entire function, we have $C_{2} \neq 0$. If $C_{1}=0$, then $\frac{f_{1}}{f_{2}}$ is a constant, a contradiction. So $C_{1}, C_{2} \neq 0$. Then $\frac{f_{1}}{f_{2}}$ is a constant, a contradiction. So $C_{3} \neq 0$.
Subcase 2: $C_{2}=0$. Then from (3.10) we have $C_{1} b_{1} f_{2}^{n}+C_{3} b_{2} g_{2}^{n}=0$. Because f_{2}, g_{2} are non-zero entire functions, we have $C_{1} \neq 0, C_{3} \neq 0$. From this and (3.9) it follows that $g_{2}^{n}=-\frac{C_{1} b_{1}}{C_{3} b_{2}} f_{2}^{n}, \frac{g_{2}}{f_{2}}=h, h \in \mathbb{K}, h \neq 0$, and

$$
\begin{align*}
& b_{1}\left(1+\frac{C_{1}}{C_{3}}\right) f_{2}^{n}+f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)-g_{1}^{n-m}\left(g_{1}^{m}+a_{2} g_{2}^{m}\right)=0 \\
& -g_{1}^{n}+f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)+\left(b_{1}\left(1+\frac{C_{1}}{C_{3}}\right) f_{2}^{n-m}-a_{2} h^{m} g_{1}^{n-m}\right) f_{2}^{m}=0 \tag{3.11}
\end{align*}
$$

Suppose that $1+\frac{C_{1}}{C_{3}} \neq 0$. Then, from the similarity of (3.11) and (3.9), by a similar argument as in (3.9), there exist constants $C_{1}^{\prime}, C_{2}^{\prime},\left(C_{1}^{\prime}, C_{2}^{\prime}\right) \neq(0,0)$, such that

$$
\begin{equation*}
C_{2}^{\prime} g_{1}^{n}+C_{1}^{\prime} f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)=0 \tag{3.12}
\end{equation*}
$$

Since g_{1} is a non-zero entire function and $\frac{f_{1}}{f_{2}}$ is not a constant, by (3.12) we obtain $C_{1}^{\prime} \neq 0, C_{2}^{\prime} \neq 0$. We have

$$
\begin{align*}
& C_{1}^{\prime} f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)=-C_{2}^{\prime} g_{1}^{n}, C_{1}^{\prime}\left(\frac{f_{1}}{f_{2}}\right)^{n}+C_{1}^{\prime} a_{1}\left(\frac{f_{1}}{f_{2}}\right)^{n-m}=-C_{2}^{\prime}\left(\frac{g_{1}}{f_{2}}\right)^{n} \\
& 3.13) \quad C_{1}^{\prime}\left(\frac{f_{1}}{f_{2}}\right)^{n-m}\left(\left(\frac{f_{1}}{f_{2}}\right)^{m}+a_{1}\right)=-C_{2}^{\prime}\left(\frac{g_{1}}{f_{2}}\right)^{n} \tag{3.13}
\end{align*}
$$

Note that the equation $z^{m}+a_{1}=0$ has m distinct roots $d_{1}, d_{2}, \ldots, d_{m}$. Set $f=\frac{f_{1}}{f_{2}}, g=\frac{g_{1}}{f_{2}}$. Consequently, by (3.13) we have

$$
\begin{equation*}
f^{n-m}\left(f-d_{1}\right) \cdots\left(f-d_{m}\right)=C g^{n}, C \neq 0 \tag{3.14}
\end{equation*}
$$

Since $\frac{f_{1}}{f_{2}}$ is not a constant, neither is $\frac{g_{1}}{f_{2}}$. By $m \geq 2, n \geq 2 m+8$ we have $m+1 \geq 2+\frac{n-m}{n}+\sum_{i=1}^{m} \frac{1}{n}$. Then applying Lemma 3.2 to (3.14) with $q=m+1$, $n=n, n_{1}=n-m, n_{2}=1=n_{3}=\cdots=n_{m}$, we have a contradiction. So $1+\frac{C_{1}}{C_{3}}=0$. Therefore $c b_{2} g_{2}^{n}=b_{1} f_{2}^{n}$, and $g_{2}=h f_{2}$ with $b_{1}=c b_{2} h^{n}$.
Subcase 3. $C_{1}=0$. From (3.10) we have $C_{2} f_{1}^{n-m}\left(f_{1}^{m}+a_{1} f_{2}^{m}\right)+C_{3} b_{2} g_{2}^{n}=0$. Then, from the similarity of this equation and (3.12), by a similar argument as in (3.12) we have a contradiction.
Subcase 4. $C_{1} \neq 0, C_{2} \neq 0, C_{3} \neq 0$.
By a similar argument as in (3.7) we obtain a contradiction. So $b_{2} g_{2}^{n}=$ $b_{1} f_{2}^{n}, g_{2}=h f_{2}, h \in \mathbb{K}, h \neq 0$, with $b_{1}=b_{2} h^{n}$.
Case 2. $c \neq 1$. Set $b^{n}=c, e_{1}=b g_{1}, e_{2}=b g_{2}$. From this and (3.6) we get

$$
f_{1}^{n}+a_{1} f_{1}^{n-m} f_{2}^{m}+b_{1} f_{2}^{n}=e_{1}^{n}+a_{2} e_{1}^{n-m} e_{2}^{m}+b_{2} e_{2}^{n}
$$

Applying the case with $c=1$ here we obtain $b_{2} e_{2}^{n}=b_{2} b^{n} g_{2}^{n}=b_{2} c g_{2}^{n}=$ $b_{1} f_{2}^{n}, g_{2}=h f_{2}$ with $b_{1}=c b_{2} h^{n}$.
2.ii. $m \geq 3$. From (3.6) we have

$$
b_{1} f_{2}^{n}\left(\frac{1}{b_{1}} f^{n}+\frac{a_{1}}{b_{1}} f^{n-m}+1\right)=c b_{2} g_{2}^{n}\left(\frac{1}{b_{2}} g^{n}+\frac{a_{2}}{b_{2}} g^{n-m}+1\right),
$$

where $f=\frac{f_{1}}{f_{2}}, g=\frac{g_{1}}{g_{2}}$. Set $\frac{1}{b_{1}}=a_{3}, \frac{a_{1}}{b_{1}}=b_{3}, \frac{1}{b_{2}}=a_{4}, \frac{a_{2}}{b_{2}}=b_{4}$. Since $c b_{2} g_{2}^{n}=b_{1} f_{2}^{n}$,

$$
a_{3} f^{n}+b_{3} f^{n-m}=a_{4} g^{n}+b_{4} g^{n-m} .
$$

Set $h_{1}=\frac{g}{f}$. From this we obtain

$$
\begin{aligned}
& a_{3} f^{m}+b_{3}=a_{4}\left(\frac{g}{f}\right)^{n} f^{m}+b_{4}\left(\frac{g}{f}\right)^{n-m}, a_{3} f^{m}+b_{3}=a_{4} h_{1}^{n} f^{m}+b_{4} h_{1}^{n-m}, \\
& \text { 15) } \quad f^{m}\left(a_{3}-a_{4} h_{1}^{n}\right)=b_{4} h_{1}^{n-m}-b_{3},-\frac{a_{4}\left(h_{1}^{n}-\frac{a_{3}}{a_{4}}\right)}{b_{4}\left(h_{1}^{n-m}-\frac{b_{3}}{b_{4}}\right)}=\left(\frac{1}{f}\right)^{m} .
\end{aligned}
$$

Assume that h_{1} is not a constant. Note that the equation $z^{n}-\frac{a_{3}}{a_{4}}=0$ has n simple roots, the equation $z^{n-m}-\frac{b_{3}}{b_{4}}=0$ has $n-m$ simple roots. Then the equations $z^{n}-\frac{a_{3}}{a_{4}}=0, z^{n-m}-\frac{b_{3}}{b_{4}}=0$ have at most $n-m$ common simple roots. Therefore the equation $z^{n}-\frac{a_{3}}{a_{4}}=0$ has at least m distinct roots, which are not roots of the equation $z^{n-m}-\frac{b_{3}}{b_{4}}=0$. Let $r_{1}, r_{2}, \ldots, r_{m}$ be all these roots. Then, from (3.15) we see that all the simple zeros of the equations $h_{1}-r_{j}$, $j=1, \ldots, m$, have multiplicities $\geq m$. By Lemma 2.3 we have $m\left(1-\frac{1}{m}\right)<2$. Therefore $0<m<3$. From $m \geq 3$, we obtain a contradiction. Thus h_{1} is constant and so is $g_{1}=l f_{1}$. Consequently, $g_{1}=l f_{1}, g_{2}=h f_{2}$. From that and since $\frac{f_{1}}{f_{2}}$ is not a constant we obtain $1=c l^{n}, a_{1}=c a_{2} l^{n-m} h^{m}, b_{1}=c b_{2} h^{n}$.

Now we use the above lemmas to prove the main result of the paper.
Proof of Theorem 1.1. Set $L_{i}(\tilde{f})=L_{i}\left(f_{1}, \ldots, f_{N+1}\right), L_{i}(\tilde{g})=L_{i}\left(g_{1}, \ldots, g_{N+1}\right)$, $i=1, \ldots, q, P_{i}(\tilde{f})=P_{i}\left(f_{1}, \ldots, f_{N+1}\right), P_{i}(\tilde{g})=P_{i}\left(g_{1}, \ldots, g_{N+1}\right), i=1, \ldots, q$. We first prove $P_{i}(\tilde{f}) \not \equiv 0, i=1,2, \ldots, q ; q>N$, by induction on i. With $i=1$ assume that

$$
P_{1}(\tilde{f})=L_{1}^{n}(\tilde{f})-a L_{1}^{n-m}(\tilde{f}) L_{2}^{m}(\tilde{f})+b L_{2}^{n}(\tilde{f}) \equiv 0 .
$$

It follows from this and $L_{2}^{n}(\tilde{f}) \not \equiv 0$ that $\frac{L_{1}(\tilde{f})}{L_{2}(\tilde{f})}$ is a constant, and we have a contradiction to the linearly independence of f_{1}, \ldots, f_{N+1}. With $i=2$, assume that

$$
P_{2}(\tilde{f})=P_{1}^{n}(\tilde{f})-a P_{1}^{n-m}(\tilde{f}) L_{3}^{n m}(\tilde{f})+b L_{3}^{n^{2}}(\tilde{f}) \equiv 0 .
$$

Since $P_{1}(\tilde{f}) \not \equiv 0, L_{3}^{n}(\tilde{f}) \not \equiv 0$ we see that $\frac{P_{1}(\tilde{f})}{L_{3}^{n}(\tilde{f})}$ is a constant. Hence

$$
L_{1}^{n}(\tilde{f})-a L_{1}^{n-m}(\tilde{f}) L_{2}^{m}(\tilde{f})+b L_{2}^{n}(\tilde{f})-A L_{3}^{n}(\tilde{f}) \equiv 0, A \neq 0
$$

Since $L_{1}(\tilde{f}) \not \equiv 0, L_{2}(\tilde{f}) \not \equiv 0, L_{3}(\tilde{f}) \not \equiv 0$ and $n \geq 2 m+8, m \geq 3$, we deduce from Lemma 3.3 that $\frac{L_{2}(\tilde{f})}{L_{3}(\tilde{f})}$ is a constant, and we have a contradiction to the linearly independence of f_{1}, \ldots, f_{N+1}.

Now we consider $P_{i}(\tilde{f}) \equiv 0$. Then

$$
\begin{equation*}
P_{i-1}^{n}(\tilde{f})-a P_{i-1}^{n-m}(\tilde{f}) L_{i+1}^{n^{i-1} m}(\tilde{f})+b L_{i+1}^{n^{i}}(\tilde{f}) \equiv 0 \tag{3.16}
\end{equation*}
$$

Applying the induction hypothesis and by a similar argument as above we have a contradiction.

Next we consider

$$
\begin{equation*}
P_{i}(\tilde{f})=A_{i} P_{i}(\tilde{g}), \quad A_{i} \neq 0, i=1,2, \ldots, q \tag{3.17}
\end{equation*}
$$

We will show that $L_{j}(\tilde{g})=c_{j} L_{j}(\tilde{f}), c_{j} \neq 0, j=1, \ldots, i+1$, by induction on i. With $i=1$ we get $P_{1}(\tilde{f})=A_{1} P_{1}(\tilde{g})$,

$$
L_{1}^{n}(\tilde{f})-a L_{1}^{n-m}(\tilde{f}) L_{2}^{m}(\tilde{f})+b L_{2}^{n}(\tilde{f})=A_{1}\left(L_{1}^{n}(\tilde{g})-a L_{1}^{n-m}(\tilde{g}) L_{2}^{m}(\tilde{g})+b L_{2}^{n}(\tilde{g})\right)
$$

Since $L_{1}(\tilde{f}) \not \equiv 0, L_{2}(\tilde{f}) \not \equiv 0, L_{1}(\tilde{g}) \not \equiv 0, L_{2}(\tilde{g}) \not \equiv 0$ and $n \geq 2 m+8, m \geq 3$, we deduce from Lemma 3.3 and the above equation that $L_{j}(\tilde{g})=c_{j} L_{j}(\tilde{f}), c_{j} \neq$ $0, j=1,2$. Now we consider (3.17). Then

$$
\begin{align*}
& P_{i-1}^{n}(\tilde{f})-a P_{i-1}^{n-m}(\tilde{f}) L_{i+1}^{n^{i-1} m}(\tilde{f})+b L_{i+1}^{n^{i}}(\tilde{f}) \tag{3.18}\\
= & A_{i}\left(P_{i-1}^{n}(\tilde{g})-a P_{i-1}^{n-m}(\tilde{g}) L_{i+1}^{n^{i-1} m}(\tilde{g})+b L_{i+1}^{n^{i}}(\tilde{g})\right) .
\end{align*}
$$

Since $P_{i-1}(\tilde{f}) \not \equiv 0, L_{i+1}(\tilde{f}) \not \equiv 0, P_{i-1}(\tilde{g}) \not \equiv 0, L_{i+1}(\tilde{g}) \not \equiv 0$ and $n \geq 2 m+8$, $m \geq 3$, we deduce from Lemma 3.3 and (3.18) that

$$
P_{i-1}(\tilde{f})=B_{i-1} P_{i-1}(\tilde{g}), L_{i+1}^{n^{i-1}}(\tilde{g})=C_{i+1} L_{i+1}^{n^{i-1}}(\tilde{f})
$$

Applying the induction hypothesis here we have $L_{j}(\tilde{g})=c_{j} L_{j}(\tilde{f}), c_{j} \neq 0$, $j=1,2, \ldots, i+1$.

Now we can return to the proof of Theorem 1.1. Consider

$$
\begin{equation*}
P(\tilde{f})=P(\tilde{g}), q>N \tag{3.19}
\end{equation*}
$$

From (3.17) we get $L_{i}(\tilde{g})=c_{i} L_{i}(\tilde{f}), c_{i} \neq 0, i=1, \ldots, q+1$. Since $L_{i}, i=$ $1, \ldots, N+1$, are linearly independent and $L_{1}, \ldots, L_{N+1}, L_{j}, j \in\{N+2, \ldots$, $q+1\}$ are linearly dependent we get

$$
\begin{array}{cl}
L_{j}=b_{1 j} L_{1}+b_{2 j} L_{2}+\cdots+b_{N+1 j} L_{N+1}, b_{k j} \neq 0, & k=1, \ldots, N+1, \\
& j=N+2, \ldots, q+1 ; \\
L_{j}(\tilde{f})=b_{1 j} L_{1}(\tilde{f})+b_{2 j} L_{2}(\tilde{f})+\cdots+b_{N+1 j} L_{N+1}(\tilde{f}), \quad & j=N+2, \ldots, q+1 ; \\
L_{j}(\tilde{g})=b_{1 j} L_{1}(\tilde{g})+b_{2 j} L_{2}(\tilde{g})+\cdots+b_{N+1 j} L_{N+1}(\tilde{g}), & j=N+2, \ldots, q+1 .
\end{array}
$$

From this and $L_{i}(\tilde{g})=c_{i} L_{i}(\tilde{f}), c_{i} \neq 0, i=1,2, \ldots, N+1 ; L_{j}(\tilde{g})=c_{j} L_{j}(\tilde{f})$, we obtain

$$
\begin{gathered}
L_{j}(\tilde{g})=c_{1} b_{1 j} L_{1}(\tilde{f})+c_{2} b_{2 j} L_{2}(\tilde{f})+\cdots+c_{N+1} b_{N+1 j} L_{N+1}(\tilde{f}) ; \\
c_{1} b_{1 j} L_{1}(\tilde{f})+c_{2} b_{2 j} L_{2}(\tilde{f})+\cdots+c_{N+1} b_{N+1 j} L_{N+1}(\tilde{f}) \\
=c_{j} b_{1 j} L_{1}(\tilde{f})+c_{j} b_{2 j} L_{2}(\tilde{f})+\cdots+c_{j} b_{N+1 j} L_{N+1}(\tilde{f}), j=N+2, \ldots, q+1
\end{gathered}
$$

By the linear independence of f_{1}, \ldots, f_{N+1} we obtain $c_{j}=c_{1}=c_{j}=c_{2}=$ $\cdots=c_{N+1}, j=N+2, \ldots, q+1$. Set $c=c_{i}, i=1, \ldots, q+1$. Then $L_{j}(\tilde{g})=$ $c L_{j}(\tilde{f}), j=1, \ldots, q+1$. Then $g_{i}=c f_{i}, i=1, \ldots, N+1, c^{n^{q}}=1$.

Now we are going to complete the proof of Theorem 1.2
Proof of Theorem 1.2. Let $\tilde{f}=\left(f_{1}, \ldots, f_{N+1}\right)$ and $\tilde{g}=\left(g_{1}, \ldots, g_{N+1}\right)$ be reduced representations of f and g, respectively.

Since $\mu_{f}(X)=\mu_{g}(X)$, it is easy to see that there exists a non-zero constant c such that $P(\tilde{f})=c P(\tilde{g})$. Set $l^{n^{q}}=c$ and $\tilde{h}=\left(l g_{1}, \ldots, l g_{N+1}\right)$. Then \tilde{h} is a reduced representation of g and $P_{q}(\tilde{f})=P_{q}(\tilde{h})$. By Theorem 1.1, $f \equiv g$.

References

[1] V. H. An and T. D. Duc, Uniqueness theorems and uniqueness polynomials for holomorphic curves, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 253-262.
[2] T. An and J. Wang, Uniqueness polynomials for complex meromorphic functions, Internat. J. Math. 13 (2002), no. 10, 1095-1115.
[3] A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), no. 3, 251-269
[4] A. Boutabaa and A. Escassut, On uniqueness of p-adic meromorphic functions, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2557-2568.
[5] _ Uniqueness problems and applications of the ultrametric Nevanlinna theory, Ultrametric functional analysis (Nijmegen, 2002), 53-74, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003.
[6] W. Cherry and J. Wang, Uniqueness polynomials for entire functions, Internat. J. Math. 13 (2002), no. 3, 323-332.
[7] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5043-5071.
[8] A. Escassut, Meromorphic functions of uniqueness, Bull. Sci. Math. 131 (2007), no. 3, 219-241.
[9] A. Escassut, L. Haddad, and R Vidal, Urs, ursim, and non-urs for p-adic functions and polynomials, J. Number Theory 75 (1999), no. 1, 133-144.
[10] A. Escassut and E. Mayerhofer, Rational decompositions of complex meromorphic functions, Complex Var. Theory Appl. 49 (2004), no. 14, 991-996.
[11] A. Escassut, J. Ojeda, and C. C. Yang, Functional equations in a p-adic context, J. Math. Anal. Appl. 351 (2009), no. 1, 350-359.
[12] A. Escassut and C. C. Yang, The functional equation $P(f)=Q(g)$ in a p-adic field, J. Number Theory (2004), no 2, 344-360.
[13] P.-C. Hu and C.-C. Yang, A unique range set for p-adic meromorphic functions with 10 elements, Acta Math. Vietnamica. 24 (1999), 95-108.
[14] _, Meromorphic Functions over Non-Archimedean Fields, Kluwer, 2000.
[15] H. H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50 (1983), 695-711.
[16] H. H. Khoai and T. T. H. An, On uniqueness polynomials and Bi-URS for p-adic Meromorphic functions, J. Number Theory 87 (2001), 211-221.
[17] H. H. Khoai and V. H. An, Value distribution for p-adic hypersurfaces, Taiwanese J. Math. 7 (2003), no. 1, 51-67.
[18] , Value distribution problem for p-adic meromorphic functions and their derivatives, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011), Fascicule Spécial, 137-151.
[19] H. H. Khoai and M. V. Tu, p-adic Nevanlinna-Cartan Theorem, Internat. J. Math. 6 (1995), no. 5, 719-731.
[20] H. H. Khoai and C. C. Yang, On the functional equation $P(f)=Q(g)$, Value Distribution Theory and Related Topics, 201-208, Advanced Complex Analysis and Application, Vol. 3, Kluwer Academic, Boston, MA, 2004.
[21] P. Li and C. C. Yang, Some Further Results on the Functional Equation $P(f)=Q(g)$, Value Distribution Theory and Related Topics, 219-231, Advanced Complex Analysis and Application, Vol. 3, Kluwer Academic, Boston, MA, 2004.
[22] F. Pakovich, On the equation $P(f)=Q(g)$, where P, Q are polynomials and f, g are entire functions, Amer. J. Math. 132 (2010), no. 6, 1591-1607.
[23] \qquad , Algebraic curves $P(x)-Q(y)=0$ and functional equations, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 199-213.
[24] J. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), no. 1, 51-66.
[25] M. Ru, Uniqueness theorems for p-adic holomorphic curves, Illinois J. Math. 45 (2001), no. 2, 487-493.
[26] B. L. Van der Waerden, Algebra, Springer-Verlag, New York, 1991.
Vu Hoai An
Hai Duong College
Hai Duong City
Hai Duong Province 172007, Vietnam
E-mail address: vuhoaianmai@yahoo.com
Le Quang Ninh
Thai Nguyen University of Education
Thai Nguyen City
Thai Nguyen Province 251311, Vietnam
E-mail address: lqninh83@gmail.com

