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ON FUNCTIONAL EQUATIONS OF THE FERMAT-WARING
TYPE FOR NON-ARCHIMEDEAN VECTORIAL ENTIRE
FUNCTIONS

Vu Hoar AN AND LE QUANG NINH

ABSTRACT. We show a class of homogeneous polynomials of Fermat-

Waring type such that for a polynomial P of this class, if P(f1,..., fnv+1)
= P(g1,--.,9N+1), where f1,..., fN+1; g1,-..,9gn+1 are two families of
linearly independent entire functions, then f; =cg;, i =1,2,..., N + 1,

where ¢ is a root of unity. As a consequence, we prove that if X is a
hypersurface defined by a homogeneous polynomial in this class, then X
is a unique range set for linearly non-degenerate non-Archimedean holo-
morphic curves.

1. Introduction

The function equation P(f) = P(g), where P is a polynomial, f,g are
functions in some classes, has a long history, dating back to Ritt ([24]). In recent
years the problem of existence or non-existence of solutions to the equation has
investigated by many authors (see [1], [2], [6], [8], [10], [20], [21], [22], [23]). For
the case of entire functions of one variable in a non-Archimedean field, many
interesting results are obtained ([4], [5], [6], [9], [11], [12], [13], [16], [17]).

In this paper we investigated the case of the Fermat-Waring type for non-
Archimedean vectorial entire functions. Namely, we consider the equation:

P(flvf?v"'va+1) = P(glnga"'agN+1)7

where P is a polynomial of Fermat-Waring type, and f;, g; are entire functions
in a non-Archimedean field. We show if fi,..., fnv+1; 91,...,9N41 are two
families of linearly independent entire functions, then f; = cg;, i = 1,2,...,
N + 1, where ¢ is a root of unity. As a consequence, we obtained a class of
unique range sets for linearly non-degenerate non-Archimedean holomorphic
curves.
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Throughout this paper, K will denote an algebraically closed field of char-
acteristic zero, complete for a non-trivial non-Archimedean absolute value de-
noted by | - |. We assume that the reader is familiar with the notations in the
non-Archimedean Nevanlinna theory (see [14]).

Let f be a non-constant meromorphic function on K. For every a € K,
define the function p% : K — N by

4(z) = 0 if f(z) #a
I =N it £(2) = a with multiplicity d.

A non-Archimedean holomorphic map f is a map f = [f1,..., fv4+1] : K —
PV (K), where f1,..., fn11 are non-Archimedean entire functions without com-
mon zeros. The map f = (f1,..., fn41) 1 K — KN — {0} is called a reduced
representation of f (see [25]).

Let H be a hypersurface of PV (K) such that the image of f is not contained
in H, and H is defined by the equation F = 0. For every z € K set

p(H, 2) = ppop(2), pp(H) = pp,f.

Let us first describe the class of polynomials of Fermat-Waring type consid-
ered in this paper.

A family of g polynomials of N+ 1 variables are said to be in general position
if no set of N + 1 polynomials in this family has common zeros in KN +! — {0}.

Now let given ¢ linear forms of N + 1 variables (¢ > N + 1) in general
position:

L;= Li(zl, S ,ZN+1) =121 + Q222+ 0+ QG N+H1ZN L+, 1=1,2,...,q.

Let n, m, be positive integers, m < n, a,b € K, a,b # 0.

The following polynomial is called a Yi (m,n)-polynomial:

Yimn) (21, 22) = 27 — az? " 25" + b2y,
Now consider ¢ homogeneous polynomials:
P1 = Pl(zl, . ;ZN+1) = Yv(mm)(Ll, L2) = L? — aL?ingl —|— bLg,

and for ¢ > i > 2, set:

]DZ' = Pi(zl, ey ZN+1) = Y(m,n)(Pifl, L:l-l: )
Then we consider the following polynomial of Fermat-Waring type of degree
nd:

(11) P(Zl,ZQ,...,ZN+1):Pq(zl,...,ZN+1).
The polynomial P(z1, 22,...,2n+1) is called a g-iteration of Yi (m,n)-polyno-
mials.

For entire functions fi,..., fnv+1; 91,---,9~n+1 over K we consider the fol-

lowing equation:

(1.2) P(fi,.. . fv+1) = P(g1,- -, gn+1)-
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Denote by X the hypersurface of Fermat-Waring type in PV (K), which is de-
fined by the equation

(].3) P(Zl,...,ZNJrl):O.

We shall prove the following theorems.

Theorem 1.1. Let P(z1, 22, ...,2Nn+1) be a g-iteration of Yi (m,n)-polynomials
n>2m+8, m>3, and fi,..., fN+1; 91,---,9N+1 e two families of linearly
independent entire functions over K, satisfying the equation P(f1,..., fN4+1) =

P(g1,...,9n+1). Then gi =cf;, ™ =1,i=1,...,N +1.

Theorem 1.2. Let f and g be two linearly non-degenerate holomorphic map-
pings from K to PN(K). Let X be the Fermat-Waring hypersurface defined by
the equation P(z1,...,2n+1) = 0, where P(z1,...,2N+1) i8S a g-iteration of Yi
(m,n)-polynomials, and n > 2m + 8, m > 3. Then py(X) = pye(X) implies
f=y

The main tool to be used is the non-Archimedean Nevanlinna theory, so we
first recall some basic facts of the theory. More details can be found in [3], [14],
[15], [17], [19].

The authors would like to thank the referee for his/her valuable suggestions.

2. Preliminaries

Let f be a non-constant meromorphic function on K.
The following lemma were proved in [3], see also [14].

Lemma 2.1. Let f be a non-constant meromorphic function on K and let
ai,az,...,aq, ¢ > 2, be distinct points of K. Then

1
f—a;

Let f be a holomorphic curve from K to PV (KK) with reduced representation
f="(f1,-.-, fn+1)- Define the characteristic function of f, by

Ty (r) = log|fll,. where |[fI}, = max_Ifi.

(q—1)T(r,f) <N(r, )+ ZN(T, ) —logr + O(1).

where for an entire function f, denote by | f|, the maximum of | f(z)] for |z| < 7.
Let H be a hypersurface of PV (K) such that the image of f is not contained
in H, and H is defined by the equation F' = 0. Set

1 1
Nf(H,T):N(T,—,,), Nk,f(H,T):Nk(T,—~).
F(f) F(f)
Let f be a holomorphic curve from K to PV (K). Then f is called linearly
non-degenerate if there is not any linear form L of variables 21, ..., zy41 such

that L(f) = 0, i.e., the image of f is not contained in any hyperplane of PV (K).
Let ¢, N be positive integers with ¢ > N + 1. We say that the hypersurfaces
Hi,...,H, of PN(K) are in general position if ﬂjf{l H;, = 0 for every subset
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{j1,---sgn+1} C€{1,...,q}. The following lemmas were proved in [19].

Lemma 2.2. Let f be a linearly non-degenerate holomorphic curve from K to
PN (K) and Hy, . .. ,Hy be hyperplanes of PN (K) in general position. Then

(= N =1)T§(r) <> Ny p(Hi,r) - w logr + O(1).

i=1
Lemma 2.3. Let f be a non-constant meromorphic function on K and let
ai,as,...,aq, ¢ > 3, be distinct points of K U {oo}. Suppose either f — a;
has no zeros, or all the zeros of the functions f — a; have multiplicity at least

mi,t=1,...,q9. Then
l 1
da-—)<2
’ mg
i=1

3. Functional equations and unique range sets
We first need the following lemmas:

Lemma 3.1. Let d,N € N* q; € N and zidfqiDi(zl,zQ, ... ZN+41) be a family
in general position of homogeneous polynomials with coefficients in K of degree
d such that fidﬂ”Di(fl, cos IN41) Z20, 1 <i < N+ 1. Suppose

N+1 N+1
> FEUD(fry o fng) =0, d > N2 — 14 > g, N>1.
i=1

=1

Then fldfqlDl(fl, ces INF1)y s fzc\lquDN(fl, .oy fN41) are linearly depen-
dent on K.

Proof. We consider the following possible cases:

Case 1: f1,..., fn+1 have no common zeros.
By the hypothesis, zf_qi D;(z1,...,2n+1) is a family in general position, we
then get

F: (fldi(nDl(fl;va"'7fN+1)7"'7 ]C\lfinDN(flaf27"'afN+l))

which is a reduced representation of the holomorphic curve

F= [f{i_qlD1(f1,f2,-"7fN+1) AR f]lf[_qNDN(flvaa"'afNJrl)]

from K to PY~1(K). Assume that F' is linearly non-degenerate. By the hy-
pothesis we have

N+1

(3.1) ZfidiqiDi(flaf%"'afNJrl):0-
i=1

We first prove d1y(r) = Tr(r) + O(1). Set

Ri(zl, ce ZN+1) = Zd_qiDi(Zl,Zg, ceyZN+1), t=1,... N+ 1.

K2
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From the hypothesis of general position and the Hilbert Nullstellensatz [26] it
implies that for any integer k,1 < k < N + 1, there is an integer my > d such

that
N41

2t = Z i, (21, 2N+1) Ri(21, -+ o, 2N 1),
i=1
where a;, (21,...,2n8+1), 1 <4 < N + 1, are homogeneous polynomials with
coefficients in K of degree my — d. Therefore
N+1
;nk = Z aik(fl,...,fN+1)Ri(f1,...,fN+1), k= 1,,N+1
i=1

It implies that
Tyrw(r) = miTy, (r) < (mi — d)T¢(r) + _max Tr (s, px00)(r) + O(1),

1<i<N4+1
(32) de( ) < 1<12%\)[(+1TR1(f1, ,fNJrl)(T) + O(].)

On the other hand,

(33) TRi(f17~~~7fN+1)(r) = TfidiqiDi(flny _____ fN+1)(T) < de(T) + O(]')

foralli=1,...,N +1.

By (3.2) and (3.3) we have dT(r) = 1§%%(+1TRi(f1,...,fN+1)(T)JFO(l)' There-

fore dTy(r) = Tr(r) + O(1). Consider the following hyperplanes in general
position in PV~ :

Hy:21=0; Hy:29=0; ...;Hy :2any =0; Hyy1:x1+22+---+2zny =0.
Using Lemma 2.2, and noting that d —¢; > N — 1,

1
Ny_1,r(Hyy1,7) = Ny -1 (7, -
fN+q1N+ Dnii(f1, fa,- -5 [n+1)

),

we have
N+1
N(N -1
dTy(r) = Tr(r) + O(1 ZNN 1,7(Hi,r) — %bgrﬁLO(l)
=1
N+1 N+1 )
N -1 N )+ N
)1:21 (r, Z Di(f1, f2,-- - fn+1)
_wwwm
N+1 ( )
< (N =1)(N+1)T¢(r) + Z T (r logr + O(1)

N+1
NN 1
—1+qu Ty(r ( )logr—i—O()
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and N
+1
N(N -1)
@- (V- 1)- 3 g1y + YD
=1
Because d > N2 — 1 + Zi\”{l qi, we have a contradiction.
So fldfqlDl(fl, e TNy e ff\lquDN(fl, ...y fny1) are linearly depen-
dent on K.
Case 2: f1,..., fn+1 have common zeros. Let [ be a greatest common divisor
of fl; fQ, ey fN+1- Write fl = lhi, = 1, .. .,N + 1. Then hl, ey hN+1 have
no common zeros. From (3.1) we obtain

logr < O(1).

N+1
I Z R~ Dy(hy, ha,. .., hay1) =0, and

(3.4) N+1

Zhd “Di(hy,...,hy41) = 0.

By a similar argument as in the proof of Case 1 for (3.4) we get that
RN Dy (e, hvg)s o B N D (ha, . hivg)

are linearly dependent on K. So

f{i_'“D1(f1, sy fNg1), - .,f}ff_QNDN(fh s fNa1)

are linearly dependent on K.
Lemma 3.1 is proved. (I

Lemma 3.2. Let n,ni,ne,...,nq,q € N*, a1,...,aq,c € K, ¢ # 0, and ¢ >
24 2321 2. Then the functional equation
(f —a)" (f —a2)" - (f —ag)"* = cg"
has no non-constant meromorphic solutions (f,g).
Proof. Suppose that (f, g) is a non-constant meromorphic solution of the equa-
tion:
(f—a)" (f —a2)™ - (f —ag)™ = cg".
From this we see that if zg € K is a zero of f — a; for some 1 < i < ¢, then z
is a zero of g and n; Y (20) = nyig(20). So
—-— 1 n; 1 n;
N < BN ——)y< Y, o(1).
(=) < SN =) < 2T 1)+ 01)
From this and by Lemma 2.1,

|/\
ZI

(¢—2)T —logr+ O(1)

nsLe
>

IA
3|3

N(r,——) —logr + O(1)

i=1 @i
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q
“(r, f) —logr + O(L); (¢ =2 = Y “)T(r. f) + logr

=1
1).

Since ¢ >2+>7 . we obtain a contradiction. O

IN
iM-

IN
S

Lemma 3.3. Let n,m € N*, n>2m+ 8, a1,b1,a2,b2,¢c € K, a1 #0, by # 0,
azs #0, by 0, c#0, and let f1, fo, 91,92 be non-zero entire functions.
1. Suppose that % is a non-constant meromorphic function, and

(3.5) S+ afi " " + 01 fy = bags.
Then there exists c1 # 0 such that c1bagy = b1 f3, g2 = hfa with by = c1bah™,
h e K.

2. Suppose that % and Z—; are non-constant meromorphic functions, and
(3.6) JU+arfi™ "3+ bufs' = gt + azg1 ™™ 95" + bagy).

i. If m > 2, then

cbaghy = b1 fy, go = hfs with by = cba2h™, h € K.
ii. If m > 3, then
g1 =1f1,92 = hfs with 1 =1cl", a1 = casl™ ™h™, by = cboh™, I,h € K.

Proof. 1. From (3.5) we have
3.7) U anfs”) + b fy = bagy = 0.

Note that 27" (x* + a125"), b1zl , —box} are the homogeneous polynomials of

degree n in general position. Since n > 2m + 8 and by Lemma 3.1, there exists

c1 # 0 such that c1b2g5 = by f2'. Therefore go = hfs with b; = c109R™, h € K.
2.i. We consider the possible cases:

Case 1: ¢ =1. Then

(3.8) i +af "+ bufs = g1 +azg) " gg" + bagy,
ie.,

(3.9) bufs + 17" +anfy") —bagy — gt " (91" + azgy") = 0.

Note that bizy, 57" (ah" + ar2]"), —boxly, —z)~ " (2" + azz§") are the homo-
geneous polynomials of degree n in general position. Since n > 2m + 8 and by
Lemma 3.1, there exist constants Cy, Ca,Cs, (C1,Ca,C5) # (0,0,0), such that

(3.10) Ciby fo' + Co 7™ (f1" + a1 f3") + C3bagy = 0.

We consider the following possible subcases:
Subcase 1: C5 = 0. Then from (3.10) we have

Cibif3 + Cof "™ (f1" + a1 f3") = 0.



1192 V. H. AN AND L. Q. NINH

Since fy is a non-zero entire function, we have Cy # 0. If C; = 0, then
% is a constant, a contradiction. So C1,C2 # 0. Then % is a constant, a
contradiction. So C5 # 0.

Subcase 2: C3 = 0. Then from (3.10) we have C1b1 f3 + C3b2gy = 0. Because
f2, g2 are non-zero entire functions, we have C; # 0, C3 # 0. From this and

(3.9) it follows that gy = —SL2 £z, 2 =h, h €K, h#0,and

b1(1 n )f2 F T afy) — g™ (gl + azgyt) =0,

e
(811) =gl + U+ anfy) + (b (1 + COfET sk ") g5 =o.

Suppose that 1 + Cl # 0. Then, from the similarity of (3.11) and (3.9), by
a similar argument as in (3.9), there exist constants C7, C4, (C1,C%) # (0,0),
such that

(3.12) Cogi + CLIT ™" (" + a1 f3") = 0.

Since g; is a non-zero entire function and % is not a constant, by (3.12) we
obtain C7 # 0, C4 # 0. We have

CLR (7 + ) = ~Cagt € (2) "+ Gl (2)7 =~y (),

(3.13) Ol(ﬁ)" m((g) +a1) =—02( 2)

Note that the equation 2™ + a; = 0 has m distinct roots di,ds,...,dy. Set

f= 2 g= gl . Consequently, by (3.13) we have

(3.14) N f=dy) - (f —dm) = Cg™, C#0.

Since f—; is not a constant neither is %. By m > 2, n > 2m + 8 we have

m+1 >242=m 3" L Then applying Lemma 3.2 to (3.14) with ¢ = m+1,
n=mn,n = n —m, no =1=mn3 =--- = n,,, we have a contradiction. So
1+ Cl = 0. Therefore cbagy = b1 f3, and go = hfy with by = cbah™.
Subcase 3. C; = 0. From (3.10) we have Cof{'™(f1" + a1 f3*) + Csbagy = 0.
Then, from the similarity of this equation and (3.12), by a similar argument as
n (3.12) we have a contradiction.
Subcase 4. C1 #£0, Co #£0, C3 #0.

By a similar argument as in (3.7) we obtain a contradiction. So bagh =
blfén, g2 = hfg, h e K, h 75 0, with by = bah™.
Case 2. ¢ # 1. Set b™ = ¢, e; = bgy, ea = bge. From this and (3.6) we get

ST+ arfi7 " +b1fy = el + agel™"ey" + baey.

Applying the case with ¢ = 1 here we obtain bsel = babd"gy = bacgy =
b1 /3, g2 = hfs with by = cbah”.
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2.ii. m > 3. From (3.6) we have

]' a —m n ]' n a n—m
blfzn(b—lf“rb—if" +1) = cbags (59 +b—jg +1),

aq 1

where f = &L 2L Set = az, 3+ = b3, 3; = as, > = bs. Since

f2 9 = g2
cbogy = b1 f3',
agf" + b3 f"T" = asg" + bag" ™.
Set h; = %. From this we obtain

n

asf™ + by = a4<§> £+ ba(

%) T asf™ 4 by = aghf™ 4 byl
as(hy —¢2) 1.,
—_wl (o)™,

Cby(hpTm =By f

Assume that h; is not a constant. Note that the equation z™ — Z—Z =0 hasn

(3.15) F™(as — ash?) = byhT"™ — by,

simple roots, the equation 2z"~™ — Z—Z = 0 has n — m simple roots. Then the

equations z"™ — Z—Z =0, 2" — 2—2 = 0 have at most n —m common simple roots.

Therefore the equation 2™ — Z—i = 0 has at least m distinct roots, which are

not roots of the equation 2"~ — 2—2 = 0. Let r1,72,...,7, be all these roots.
Then, from (3.15) we see that all the simple zeros of the equations hy — rj,
j =1,...,m, have multiplicities > m. By Lemma 2.3 we have m(1 — %) < 2.
Therefore 0 < m < 3. From m > 3, we obtain a contradiction. Thus hy is
constant and so is g1 = [f; . Consequently, g1 = [f1, go = hfs. From that and
since % is not a constant we obtain 1 = cl™, a1 = cal™~™h™, by = cboh™. 0O

Now we use the above lemmas to prove the main result of the paper.

Proof of Theorem 1.1. Set Li(f)=Li(f1,---, fn+1), Li(§)= Li(g1,. .-, gn+1),
i=1,....q, Bi(f) = Pi(f1,.- -, fn+1), Pi(9) = Pi(g1,- .-, gn11), 1 = 1,...,q.
We first prove P;i(f) #0,i=1,2,...,q; ¢ > N, by induction on i. With i =1
assume that

Pu(f) = LY(f) = aly™ " (F) L' (f) + bL3(f) = 0.

It follows from this and L} (f) # 0 that ilgg is a constant, and we have a

contradiction to the linearly independence of f1,..., fy+1. With ¢ = 2, assume
that

PBy(f) = PP (f) — PP ()L™ (F) + LY () = 0.
Since Pi(f) 20, LE(f) # 0 we see that fi((?) is a constant. Hence

LY(f) —aL™™()LS'(f) + bL3(f) — AL5(f) =0, A#0.
Since Li(f) # 0, La(f) # 0, Ls(f) # 0 and n > 2m + 8, m > 3, we deduce
Lz (f)

L3(f)
linearly independence of f1,..., fn+1.

from Lemma 3.3 that is a constant, and we have a contradiction to the
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Now we consider P;(f) = 0. Then

(3.16) Pz”ﬂ(f) - aPin:lm(f)Lﬁrl m(f) + bLerl(f) =0.
Applying the induction hypothesis and by a similar argument as above we have

a contradiction.
Next we consider

(3.17) Pi(f) = AiPi(§), A; 20, i=1,2,...,q.

We will show that L;(3) = ¢;L;(f), ¢; #0, j =1,...,i+ 1, by induction on
i. With i =1 we get P, (f) A1Pi(9),

LY(f) = aLy™™(F)L5(f) + bLE(f) = AL(L1(§) — aLF~™(§)L5"(§) + bLE (7))
Since L1(f) # 0, La(f) # 0, L1(3) # 0, La(3) 0 and n > 2m + 8, m > 3, we
deduce from Lemma 3.3 and the above equation that L;(§) = ¢;L;(f), ¢; #
0,7 = 1,2. Now we consider (3.17). Then
Pﬁl(f:) - aPzﬁ:lm(f)Lﬁrl m(f) + bLerl(f)

= Ai(PL1(9) —aP™(g )L;lJrl m( ) + bLz+1( )-
Since P;_1(f) # 0, Lixa(f) #0, Pim1(g) # 0, Lis1(g) # 0 and n > 2m + 8,
m > 3, we deduce from Lemma 3.3 and (3.18) that

~ N ni-l, . ni-l, %

Pi1(f) = BicaPie1(9), Liy (9) = Cisa Ly ()
Applying the induction hypothesis here we have L;(g) = ¢;L (N), cj # 0,
j=1,2,...i+1.

Now we can return to the proof of Theorem 1.1. Consider

(3.19) P(f) = P(3), ¢ > N.

From (3.17) we get L;(g) = ciLi(f), ci #0,1=1,...,g+ 1. Since L;,i =

1,...,N +1, are linearly independent and L1,...,Ly41,Lj, j € {N+2,...,
g+ 1} are linearly dependent we get

Lj = blel + ijLg + -4 bN+1jLN+1,bkj 75 0, k=1,...,N+1,

1=N+2,...,q+1;

Li(f) = by La(F) + by La(f) + -+ bvisLnvea (), J=N+2....0+1

L;j(g) = bi;L1(g) + b2;L2(g) + -+ bny1;Ln11(9), j=N+2,...,¢+1

From this and L;(g) = ciLi(f), ¢ #0,i=1,2,...,N+1; Lj(g) = chj(f),

we obtain

L;(§) = erbi; Li(f) + cabojLo(f) + -+ + engrbys1; L1 (f);

(3.18)

C1b1jL1(f> + C2b2jL2(f> +-o CN+1bN+1jLN+1(f)
= ¢ibi; L (f) + ¢ibo; Lo(f) + -+ + by g1 Lnsa(f), =N +2,...,q+1.
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By the linear independence of fi,..., fy41 we obtain ¢; = ¢ = ¢; = ¢ =
c=cng1, J=N+2,...,g+1.Setc=¢;,i=1,...,g+ 1. Then L;(g) =
cLi(f),j=1,...,¢q+1.Then g; =cfi,i=1,...,N+1, ¢ =1. O

Now we are going to complete the proof of Theorem 1.2

Proof of Theorem 1.2. Let f = (f1,---sfn41) and g = (g1,...,9N+1) be re-
duced representations of f and g, respectively.

Since pp(X) = pg(X), it is easy to see that there exists a non-zero constant
¢ such that P(f) = ¢P(§). Set I"" = c and h = (Ig1,...,lgn+1). Then his a
reduced representation of g and P, (f) = Pq(ﬁ). By Theorem 1.1, f = g. O
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