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A CHARACTERIZATION OF THE UNIT GROUP IN Z[T ×C2]

Tevfik Bilgin, Omer Kusmus, and Richard M. Low

Abstract. Describing the group of units U(ZG) of the integral group
ring ZG, for a finite group G, is a classical and open problem. In this
note, we show that U1(Z[T × C2]) ∼= [F97 ⋊ F5] ⋊ [T × C2], where T =
〈a, b : a6 = 1, a3 = b2, ba = a5b〉 and F97, F5 are free groups of ranks 97
and 5, respectively.

1. Introduction

Given a finite group G and the ring of integers Z, we denote the integral
group ring as ZG. Its elements are all finite formal sums

∑

g∈G

rgg, where rg ∈ Z.

There is a surjective ring homomorphism ǫ: ZG → Z, defined by

∑

g∈G

rgg 7−→
∑

g∈G

rg.

The ring homomorphism ǫ is called the augmentation map and its kernel
∆Z(G) = 〈g − 1 : g ∈ G〉 is the augmentation ideal. We will denote the group
of units of ZG by U(ZG). U1(ZG) will denote the units of augmentation one in
U(ZG). Thus, U1(ZG) is a normal subgroup of U(ZG) and±U1(ZG) = U(ZG).
Observe that ±G ≤ U(ZG). The elements ±G are called the trivial units of
ZG.

Describing the units of the integral group ring is a classical and difficult
problem. Over the years, it has drawn the attention of those working in the
areas of algebra, number theory, and algebraic topology. Most descriptions
of U(ZG) in the mathematical literature either give an explicit description of
the units, the general structure of U(ZG), or a subgroup of finite index of the
unit group U(ZG). These results were often obtained by using techniques from
representation theory and algebraic number theory.
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In 1940, substantial work on the unit problem was done by Graham Higman
[5, 6]. He first showed that if U(ZG) = ±G, then U(Z[G× C2]) = ±(G× C2).
Using this, he showed that U(ZG) = ±G ⇐⇒ G is abelian of exponent 2, 3,
4, or 6 or G = E ×K8 where K8 is the quaternion group of order 8 and E is
an elementary abelian 2–group. Furthermore, Higman gave a general structure
theorem for U(ZA), where A is a finite abelian group. Other results include: A4

and S4 by Allen-Hobby [1, 2], D2p by Passman-Smith [21], G = Cp⋊Cq, where
q is a prime dividing p− 1 by Galovitch-Reiner-Ullom [4], |G| = p3 by Ritter-
Sehgal [23], and U(ZS3) by Hughes-Pearson [7]. Jespers and Parmenter [10]
gave a more explicit description of U(ZS3). In 1993, Jespers and Parmenter
[11] completed the description of U(ZG) for all groups of order 16. Jespers
[9], in 1995, gave a description of U(ZG), for the dihedral group of order 12
and for G = D8 × C2. More recently, Bilgin [3] gave a characterization of
U1(ZC12). Kusmus and Denizler [15] gave a construction of U(ZC24). Kelebek
and Bilgin [14] described the structure of U1(Z[Cn × K4]). The interested
reader is directed to Sehgal’s [24] comprehensive survey on the unit problem in
integral group rings.

In [17, 18], a general algebraic framework was developed to study U(ZG∗),
where G∗ = G × Cp with p prime. In the following sections of this note, we
focus on the case where p = 2 and then resolve a conjecture found in [17].

2. U(Z[G × C2])

Here, we obtain a result which helps us to answer the following question: As-
suming that we have a good description of U(ZG), can we obtain a description
of U(ZG∗), where G∗ = G× C2?

Let G∗ = G × 〈x〉, x2 = 1, with |G| = n. Decomposing G∗ into two
cosets, we have that G∗ = G ∪ xG = {g1, g2, . . . , gn, xg1, . . . , xgn}. Thus,
ZG∗ = ZG ⊕ xZG, a direct sum of abelian groups. Here, the equal sign
denotes equality as sets. Now, consider the surjective group homomorphism
π : G∗ → G defined by g 7→ g, x 7→ 1. This induces a ring homomorphism
π : ZG∗ → ZG; where π(P1 + xP2) = P1 + P2, and P1, P2 ∈ ZG. At the ring
level, Ker(π) = K∗ = (x− 1)ZG. So, we have the sequence of maps

K∗ ι
−−−−→ ZG∗ π

−−−−→ ZG.

Restricting π to the group of units, we obtain the split exact sequence of groups:

K
ι

−−−−→ U(ZG∗)
π

−−−−→ U(ZG),

where K = Ker(π). Hence, U(ZG∗) = K ⋊ U(ZG). Note that K = U(ZG∗) ∩
(1 +K∗). Thus, a unit in K has the form 1 + (x − 1)P , where P ∈ ZG, and
has an inverse 1 + (x − 1)Q, where Q ∈ ZG.

Also, let us consider the surjective ring homomorphism ρ : ZG ։ Z2G,
where ρ reduces the coefficients modulo 2. The kernel of ρ, say M∗ (as an
ideal), is M∗ = 2ZG. Thus, we have the following sequence of maps:

M∗
ι

−−−−→ ZG
ρ

−−−−→ Z2G.
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Furthermore, ρ induces the following exact sequence of groups, which does not
necessarily split:

M
ι

−−−−→ U(ZG)
ρ

−−−−→ U(Z2G),

where M is the kernel of the group homomorphism ρ. Observe that M =
U(ZG) ∩ (1 + M∗). Thus, a unit in M has the form 1 + 2P , where P ∈ ZG

and has an inverse 1+ 2Q, where Q ∈ ZG. Notice that here at the group level,
ρ is not necessarily surjective.

Since G∗ = G×〈x〉 and x2 = 1, we have the group homomorphism σ : G∗ →
U(ZG), where σ(g) = g and σ(x) = −1. This extends to a ring homomorphism
σ : ZG∗ → ZG. So, we have the following diagram of rings:

K∗
ι

−−−−→ ZG∗
π

−−−−→ ZG

σ



y σ



y ρ



y

M∗
ι

−−−−→ ZG
ρ

−−−−→ Z2G.

Observe that ρ◦π = ρ◦σ. Hence, σ(K∗) ⊆ M∗. Note that σ maps the element
1+(x−1)P ∈ K to the element 1−2P ∈ M , where P ∈ ZG. Thus, σ(K) ⊆ M .

Lemma 2.1. Let G∗ = G × 〈x〉, where x has order 2, u = 1 + (x − 1)P ,

v = 1+ (x− 1)Q, where P , Q ∈ ZG. Then u and v are multiplicative inverses

of each other in K ⇐⇒ 1− 2P and 1− 2Q are multiplicative inverses of each

other in U(ZG).

Proof. Let u, v ∈ K; with uv = 1. It is straightforward to see that uv =
1 + (x− 1)(P +Q − 2PQ).

Hence, uv = 1 ⇐⇒ (x− 1)(P +Q− 2PQ) = 0

⇐⇒ (2PQ− P −Q) + (P +Q− 2PQ)x = 0

⇐⇒ 2PQ− P −Q = 0

⇐⇒ 4PQ− 2P − 2Q = 0

⇐⇒ 1− 2P − 2Q+ 4PQ = 1

⇐⇒ (1 − 2P )(1− 2Q) = 1. �

Lemma 2.2. The map σ : K → M is an isomorphism of groups.

Proof. Note that σ maps the element 1+ (x− 1)P of K to the element 1− 2P
of M . It is then easy to show that σ is injective. It follows from Lemma 2.1
that σ is surjective. �

Summarizing, we have the following diagram of groups:

K
ι

−−−−→ U(ZG∗)
π

−−−−→ U(ZG)

∼=



y σ



y ρ



y

M
ι

−−−−→ U(ZG)
ρ

−−−−→ U(Z2G).
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Theorem 2.3. U(ZG∗) = K ⋊ U(ZG) ∼= M ⋊ U(ZG).

Proof. The elements of the semi-direct product M⋊U(ZG) should be viewed as
ordered pairs (u,w), where u ∈ M and w ∈ U(ZG). If k ∈ K and w ∈ U(ZG),
then the isomorphism maps kw to (σ(k), w) with the action of U(ZG) on M

induced by conjugation in U(ZG). �

The problem of describing U(ZG∗) has been reduced to the problem of de-
scribing M . In the next section, we apply Theorem 2.3 and resolve a conjecture
involving U(ZG∗), where G∗ is a particular non-abelian group of order 24.

3. Resolution of a conjecture

It was shown by Jespers [8] that there are only four finite groups G with the
property that G has a non-abelian free normal complement in U1(ZG), namely
G = S3, D4 (the dihedral group of order 8), P = 〈a, b : a4 = 1 = b4, bab−1a−1 =
a2〉, and the non-abelian group T (of order 12) described by the presentation

T = 〈a, b : a6 = 1, a3 = b2, ba = a5b〉.

In [9, 11, 17], the structure of U(Z[G× C2]) is determined for G = S3, D4 and
P . In this section, we disprove the following conjecture, first posed in [17]:

Conjecture. Let T ∗ = T × C2, where T = 〈a, b : a6 = 1, a3 = b2, ba = a5b〉.
Then, U1(ZT

∗) ∼= [F33 ⋊ F5]⋊ T ∗, where Fi is a free group of rank i.

This is certainly a plausible conjecture. Later, it was shown in [12] that U(Z[T×
C2]) is commensurable with a free-by-free group. We will show that if F33 is
replaced with F97, then a correct result is obtained.

In 1993, Parmenter [20] showed that U1(ZT ) = V ⋊T , where V = 〈v1, v2, v3,
v4, v5〉 is a free group of rank five. He also gave the generators of V to be:

v1 = 1 + (1 + a3)(−a2 + ba2)(1− a2),

v2 = 1 + (1 + a3)(−a2 + ba)(1− a2),

v3 = 1 + (1 + a3)(−a2 + b)(1− a2),

v4 = 1 + [−1 + (1 + a3)a2(a2 + ba2)](1 − a2),

v5 = 1 + [−1− a2 + (1 + a3)a(1− a− 2ba2)](1− a2).

Let us determine ρ(V ). It is straight-forward to verify the following facts. First,
ρ(vi)ρ(vj) = ρ(vj)ρ(vi), where 1 ≤ i, j ≤ 3. Also, ρ(v1)

2 = ρ(v2)
2 = ρ(v3)

2 = 1
and thus, E = 〈ρ(v1), ρ(v2), ρ(v3)〉 ∼= C2 × C2 × C2. Now, calculations show
that a2ρ(v1)a

4 = ρ(v2), a
2ρ(v2)a

4 = ρ(v3), a
2ρ(v3)a

4 = ρ(v1), a
2ρ(v1) = ρ(v4),

and [ρ(v4)]
3a4 = ρ(v5). Thus, 〈a

2, ρ(v1)〉 = 〈a2, ρ(v2)〉 = 〈a2, ρ(v3)〉 = ρ(V ).

Lemma 3.1. ρ(V ) = E ⋊ 〈a2〉, a group of order 24.

Proof. Since E = 〈ρ(v1), ρ(v2), ρ(v3)〉 is normalized by ρ(v1), ρ(v2), ρ(v3), and
a2, we have that E E ρ(V ). So, E · 〈a2〉 ≤ ρ(V ). In fact, E · 〈a2〉 = ρ(V ) and
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E ∩ 〈a2〉 = 1. Thus, ρ(V ) = E ⋊ 〈a2〉 ∼= [C2 × C2 × C2]⋊ C3, a group of order
24. �

Lemma 3.2. ρ[U1(ZT )] = E ⋊ T .

Proof. Clearly, ρ[U1(ZT )] = ρ(V ⋊ T ) = ρ(V ) · T . Since E E ρ(V ), we have
that ρ[U1(ZT )] = E · T . Since aρ(v1)a

5 = ρ(v3), aρ(v3)a
5 = ρ(v2), aρ(v2)a

5 =
ρ(v1), bρ(v1)b

3 = ρ(v1), bρ(v2)b
3 = ρ(v3), bρ(v3)b

3 = ρ(v2), we see that E is
normalized by T . Note that E ∩ T = 1. Hence, the lemma is established. �

A remark should be made at this point. Since ρ[U1(ZT )] has order 96,
|ρ(V )| = 24, and |T | = 12, this implies that |ρ(V )∩T | = 3. But 〈a2〉 ≤ ρ(V )∩T ,
where the order of a2 is 3. Hence, ρ(V )∩T = 〈a2〉. Now, we have the diagram:

K
ι

−−−−→ U(ZT ∗)
π

−−−−→ U(ZT )

∼=



y σ



y ρ



y

M
ι

−−−−→ U(ZT )
ρ

−−−−→ U(Z2T )

ι

x

 ι

x

 ι

x



M+ ι
−−−−→ U1(ZT )

onto
−−−−→ E ⋊ T

ι

x

 ι

x

 ι

x



M+ ∩ V
ι

−−−−→ V
onto

−−−−→ E ⋊ 〈a2〉.

Lemma 3.3. ρ(V ) = 〈ρ(v1), ρ(v2), ρ(v3), ρ(v4)〉 = {[ρ(v1)]
i1 ·[ρ(v2)]

i2 ·[ρ(v3)]
i3 ·

[ρ(v4)]
i4 : 0 ≤ i1, i2, i3 ≤ 1; 0 ≤ i4 ≤ 2}. Furthermore, this canonical represen-

tation is unique.

Proof. Note that ρ(V ) = 〈a2, ρ(v1)〉 = 〈ρ(v1), ρ(v2), ρ(v3), ρ(v4)〉. Also, calcu-
lations show the following:

ρ(v4)ρ(v1) = ρ(v2)a
2ρ(v1) = ρ(v2)

2a2 = a2 = ρ(v2)ρ(v4),

ρ(v4)ρ(v2) = ρ(v2)a
2ρ(v2)= ρ(v2)ρ(v3)a

2 = ρ(v2)ρ(v3)ρ(v2)ρ(v4) = ρ(v3)ρ(v4),

ρ(v4)ρ(v3)= ρ(v2)a
2ρ(v3) = ρ(v2)ρ(v1)a

2 = ρ(v2)ρ(v1)ρ(v2)ρ(v4) = ρ(v1)ρ(v4),

ρ(v4)
2ρ(v1) = ρ(v3)ρ(v4)

2,

ρ(v4)
2ρ(v2) = ρ(v1)ρ(v4)

2,

ρ(v4)
2ρ(v3) = ρ(v2)ρ(v4)

2,

ρ(v4)
3ρ(v1) = ρ(v2)ρ(v3),

ρ(v4)
3ρ(v2) = ρ(v1)ρ(v3),

ρ(v4)
3ρ(v3) = ρ(v1)ρ(v2),

ρ(v4)
4ρ(v1) = ρ(v4)ρ(v4)

3ρ(v1) = ρ(v1)ρ(v3)ρ(v4),

ρ(v4)
4ρ(v2) = ρ(v4)ρ(v4)

3ρ(v2) = ρ(v1)ρ(v2)ρ(v4),
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ρ(v4)
4ρ(v3) = ρ(v4)ρ(v4)

3ρ(v3) = ρ(v2)ρ(v3)ρ(v4),

ρ(v4)
5ρ(v1) = ρ(v1)ρ(v2)ρ(v3)ρ(v4)

2ρ(v1) = ρ(v1)ρ(v2)ρ(v4)
2,

ρ(v4)
5ρ(v2) = ρ(v1)ρ(v2)ρ(v3)ρ(v4)

2ρ(v2) = ρ(v2)ρ(v3)ρ(v4)
2,

ρ(v4)
5ρ(v3) = ρ(v1)ρ(v2)ρ(v3)ρ(v4)

2ρ(v3) = ρ(v1)ρ(v3)ρ(v4)
2.

Thus, every word in ρ(V ) can be put into the canonical form [ρ(v1)]
i1 · [ρ(v2)]

i2 ·
[ρ(v3)]

i3 · [ρ(v4)]
i4 , where 0 ≤ i1, i2, i3 ≤ 1 and 0 ≤ i4 ≤ 2. This representation

is unique, since |ρ(V )| = 24. �

Lemma 3.4. Let w[ρ(v1), ρ(v2), ρ(v3)] ∈ E, t ∈ T , with w[ρ(v1), ρ(v2), ρ(v3)] ·
t = 1. Then t = 1T .

Proof. Suppose that w[ρ(v1), ρ(v2), ρ(v3)] · t = 1 = E ∩ T . Then, we have
w[ρ(v1), ρ(v2), ρ(v3)] = t−1 ∈ T and w[ρ(v1), ρ(v2), ρ(v3)] ∈ E. This implies
that w[ρ(v1), ρ(v2), ρ(v3)] ∈ E ∩ T = 1T . Thus, w[ρ(v1), ρ(v2), ρ(v3)] = 1,
which implies that t−1 = 1T . Hence, t = 1T . �

Lemma 3.5. M+ ≤ V ⋊ 〈a2〉.

Proof. Suppose that w(v1, v2, v3, v4, v5) · t ∈ M+, where t ∈ T . This implies
that ρ[w(v1, v2, v3, v4, v5) · t] = 1. By Lemma 3.3, we have that ([ρ(v1)]

i1 ·
[ρ(v2)]

i2 · [ρ(v3)]
i3 · [ρ(v4)]

i4 ) · t = 1, where 0 ≤ i1, i2, i3 ≤ 1; 0 ≤ i4 ≤ 2; t ∈ T .
Now, [ρ(v1)]

i1 · [ρ(v2)]
i2 · [ρ(v3)]

i3 · [ρ(v4)]
i4 has three possible forms:







ρ(v1)
i1 · ρ(v2)

i2 · ρ(v3)
i3 · [ρ(v2)a

2], if i4 = 1;

ρ(v1)
i1 · ρ(v2)

i2 · ρ(v3)
i3 · [ρ(v2)ρ(v3)a

4], if i4 = 2;

ρ(v1)
i1 · ρ(v2)

i2 · ρ(v3)
i3 , if i4 = 0.

Using Lemma 3.4, we have ([ρ(v1)]
i1 · [ρ(v2)]

i2 · [ρ(v3)]
i3 · [ρ(v4)]

i4) · t = 1 implies
that t ∈ 〈a2〉. �

Lemma 3.6. M+ is a free group of rank 97.

Proof. Since M+ ≤ ρ−1[E⋊T ], where E = 〈ρ(v1), ρ(v2), ρ(v3)〉 ∼= C2×C2×C2,
we see that M+ consists of the elements of the form

ρ−1[ρ(v1)
j1ρ(v2)

j2ρ(v3)
j3 · t],

where 0 ≤ j1, j2, j3 ≤ 1 and t ∈ T . Since M+ is an appropriate kernel of ρ,
then ρ(M+) = 1. If we consider an element in M+ as

α = ρ−1[ρ(v1)
j1ρ(v2)

j2ρ(v3)
j3 · t],

we see that ρ(α) = ρ(v1)
j1ρ(v2)

j2ρ(v3)
j3 · t = 1. By Lemma 3.4, t = 1. This

implies that M+ consists of elements of the form

ρ−1[ρ(v1)
j1ρ(v2)

j2ρ(v3)
j3 ] ∈ V.

Thus, M+ ≤ V . Since V is a free group, the Nielson-Schreier Theorem states
that M+ is a free group. Note that M+ = M+∩V . Now, consider the induced
isomorphism ρ̄ : V

M+∩V ։ E ⋊ 〈a2〉, which implies that [V : M+ ∩ V ] = [V :
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M+] = 24. Since V is a free group of rank 5, this implies that M+ is a free
group of rank (24)(5)− 24 + 1 = 97. �

Theorem 3.7. Let T ∗ = T × C2, where T = 〈a, b : a6 = 1, a3 = b2, ba = a5b〉.
Then, U1(ZT

∗) ∼= [F97 ⋊ F5]⋊ T ∗, where Fi is a free group of rank i.

Proof. Invoking Theorem 2.3, we obtain U1(Z[T × C2]) = K ⋊ (V ⋊ T ) ∼=
M⋊(V ⋊T ) = [M+×C2]⋊(V ⋊T ) = [M+⋊V ]⋊(T×C2) = [F97⋊F5]⋊(T×C2),
where Fi is a free group of rank i. �
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