A CHARACTERIZATION OF THE UNIT GROUP IN $\mathbb{Z}\left[T \times C_{2}\right]$

Tevfik Bilgin, Omer Kusmus, and Richard M. Low

Abstract

Describing the group of units $U(\mathbb{Z} G)$ of the integral group ring $\mathbb{Z} G$, for a finite group G, is a classical and open problem. In this note, we show that $U_{1}\left(\mathbb{Z}\left[T \times C_{2}\right]\right) \cong\left[F_{97} \rtimes F_{5}\right] \rtimes\left[T \times C_{2}\right]$, where $T=$ $\left\langle a, b: a^{6}=1, a^{3}=b^{2}, b a=a^{5} b\right\rangle$ and F_{97}, F_{5} are free groups of ranks 97 and 5 , respectively.

1. Introduction

Given a finite group G and the ring of integers \mathbb{Z}, we denote the integral group ring as $\mathbb{Z} G$. Its elements are all finite formal sums

$$
\sum_{g \in G} r_{g} g, \text { where } r_{g} \in \mathbb{Z}
$$

There is a surjective ring homomorphism $\epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$, defined by

$$
\sum_{g \in G} r_{g} g \longmapsto \sum_{g \in G} r_{g}
$$

The ring homomorphism ϵ is called the augmentation map and its kernel $\Delta_{\mathbb{Z}}(G)=\langle g-1: g \in G\rangle$ is the augmentation ideal. We will denote the group of units of $\mathbb{Z} G$ by $U(\mathbb{Z} G)$. $U_{1}(\mathbb{Z} G)$ will denote the units of augmentation one in $U(\mathbb{Z} G)$. Thus, $U_{1}(\mathbb{Z} G)$ is a normal subgroup of $U(\mathbb{Z} G)$ and $\pm U_{1}(\mathbb{Z} G)=U(\mathbb{Z} G)$. Observe that $\pm G \leq U(\mathbb{Z} G)$. The elements $\pm G$ are called the trivial units of $\mathbb{Z} G$.

Describing the units of the integral group ring is a classical and difficult problem. Over the years, it has drawn the attention of those working in the areas of algebra, number theory, and algebraic topology. Most descriptions of $U(\mathbb{Z} G)$ in the mathematical literature either give an explicit description of the units, the general structure of $U(\mathbb{Z} G)$, or a subgroup of finite index of the unit group $U(\mathbb{Z} G)$. These results were often obtained by using techniques from representation theory and algebraic number theory.

[^0]In 1940, substantial work on the unit problem was done by Graham Higman $[5,6]$. He first showed that if $U(\mathbb{Z} G)= \pm G$, then $U\left(\mathbb{Z}\left[G \times C_{2}\right]\right)= \pm\left(G \times C_{2}\right)$. Using this, he showed that $U(\mathbb{Z} G)= \pm G \Longleftrightarrow \mathrm{G}$ is abelian of exponent 2, 3, 4 , or 6 or $G=E \times K_{8}$ where K_{8} is the quaternion group of order 8 and E is an elementary abelian 2-group. Furthermore, Higman gave a general structure theorem for $U(\mathbb{Z} A)$, where A is a finite abelian group. Other results include: A_{4} and S_{4} by Allen-Hobby [1, 2], $D_{2 p}$ by Passman-Smith [21], $G=C_{p} \rtimes C_{q}$, where q is a prime dividing $p-1$ by Galovitch-Reiner-Ullom [4], $|G|=p^{3}$ by RitterSehgal [23], and $U\left(\mathbb{Z} S_{3}\right)$ by Hughes-Pearson [7]. Jespers and Parmenter [10] gave a more explicit description of $U\left(\mathbb{Z} S_{3}\right)$. In 1993, Jespers and Parmenter [11] completed the description of $U(\mathbb{Z} G)$ for all groups of order 16. Jespers [9], in 1995, gave a description of $U(\mathbb{Z} G)$, for the dihedral group of order 12 and for $G=D_{8} \times C_{2}$. More recently, Bilgin [3] gave a characterization of $U_{1}\left(\mathbb{Z} C_{12}\right)$. Kusmus and Denizler [15] gave a construction of $U\left(\mathbb{Z} C_{24}\right)$. Kelebek and Bilgin [14] described the structure of $U_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$. The interested reader is directed to Sehgal's [24] comprehensive survey on the unit problem in integral group rings.

In $[17,18]$, a general algebraic framework was developed to study $U\left(\mathbb{Z} G^{*}\right)$, where $G^{*}=G \times C_{p}$ with p prime. In the following sections of this note, we focus on the case where $p=2$ and then resolve a conjecture found in [17].

2. $U\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$

Here, we obtain a result which helps us to answer the following question: Assuming that we have a good description of $U(\mathbb{Z} G)$, can we obtain a description of $U\left(\mathbb{Z} G^{*}\right)$, where $G^{*}=G \times C_{2}$?

Let $G^{*}=G \times\langle x\rangle, x^{2}=1$, with $|G|=n$. Decomposing G^{*} into two cosets, we have that $G^{*}=G \cup x G=\left\{g_{1}, g_{2}, \ldots, g_{n}, x g_{1}, \ldots, x g_{n}\right\}$. Thus, $\mathbb{Z} G^{*}=\mathbb{Z} G \oplus x \mathbb{Z} G$, a direct sum of abelian groups. Here, the equal sign denotes equality as sets. Now, consider the surjective group homomorphism $\pi: G^{*} \rightarrow G$ defined by $g \mapsto g, x \mapsto 1$. This induces a ring homomorphism $\pi: \mathbb{Z} G^{*} \rightarrow \mathbb{Z} G$; where $\pi\left(P_{1}+x P_{2}\right)=P_{1}+P_{2}$, and $P_{1}, P_{2} \in \mathbb{Z} G$. At the ring level, $\operatorname{Ker}(\pi)=K^{*}=(x-1) \mathbb{Z} G$. So, we have the sequence of maps

$$
K^{*} \xrightarrow{\iota} \mathbb{Z} G^{*} \xrightarrow{\pi} \mathbb{Z} G .
$$

Restricting π to the group of units, we obtain the split exact sequence of groups:

$$
K \xrightarrow{\iota} U\left(\mathbb{Z} G^{*}\right) \xrightarrow{\pi} U(\mathbb{Z} G),
$$

where $K=\operatorname{Ker}(\pi)$. Hence, $U\left(\mathbb{Z} G^{*}\right)=K \rtimes U(\mathbb{Z} G)$. Note that $K=U\left(\mathbb{Z} G^{*}\right) \cap$ $\left(1+K^{*}\right)$. Thus, a unit in K has the form $1+(x-1) P$, where $P \in \mathbb{Z} G$, and has an inverse $1+(x-1) Q$, where $Q \in \mathbb{Z} G$.

Also, let us consider the surjective ring homomorphism $\rho: \mathbb{Z} G \rightarrow \mathbb{Z}_{2} G$, where ρ reduces the coefficients modulo 2. The kernel of ρ, say M^{*} (as an ideal), is $M^{*}=2 \mathbb{Z} G$. Thus, we have the following sequence of maps:

$$
M^{*} \xrightarrow{\iota} \mathbb{Z} G \xrightarrow{\rho} \mathbb{Z}_{2} G \text {. }
$$

Furthermore, ρ induces the following exact sequence of groups, which does not necessarily split:

$$
M \xrightarrow{\iota} U(\mathbb{Z} G) \xrightarrow{\rho} U\left(\mathbb{Z}_{2} G\right),
$$

where M is the kernel of the group homomorphism ρ. Observe that $M=$ $U(\mathbb{Z} G) \cap\left(1+M^{*}\right)$. Thus, a unit in M has the form $1+2 P$, where $P \in \mathbb{Z} G$ and has an inverse $1+2 Q$, where $Q \in \mathbb{Z} G$. Notice that here at the group level, ρ is not necessarily surjective.

Since $G^{*}=G \times\langle x\rangle$ and $x^{2}=1$, we have the group homomorphism $\sigma: G^{*} \rightarrow$ $U(\mathbb{Z} G)$, where $\sigma(g)=g$ and $\sigma(x)=-1$. This extends to a ring homomorphism $\sigma: \mathbb{Z} G^{*} \rightarrow \mathbb{Z} G$. So, we have the following diagram of rings:

Observe that $\rho \circ \pi=\rho \circ \sigma$. Hence, $\sigma\left(K^{*}\right) \subseteq M^{*}$. Note that σ maps the element $1+(x-1) P \in K$ to the element $1-2 P \in M$, where $P \in \mathbb{Z} G$. Thus, $\sigma(K) \subseteq M$.

Lemma 2.1. Let $G^{*}=G \times\langle x\rangle$, where x has order $2, u=1+(x-1) P$, $v=1+(x-1) Q$, where $P, Q \in \mathbb{Z} G$. Then u and v are multiplicative inverses of each other in $K \Longleftrightarrow 1-2 P$ and $1-2 Q$ are multiplicative inverses of each other in $U(\mathbb{Z} G)$.

Proof. Let $u, v \in K$; with $u v=1$. It is straightforward to see that $u v=$ $1+(x-1)(P+Q-2 P Q)$.

$$
\text { Hence, } \begin{aligned}
u v=1 & \Longleftrightarrow(x-1)(P+Q-2 P Q)=0 \\
& \Longleftrightarrow(2 P Q-P-Q)+(P+Q-2 P Q) x=0 \\
& \Longleftrightarrow 2 P Q-P-Q=0 \\
& \Longleftrightarrow 4 P Q-2 P-2 Q=0 \\
& \Longleftrightarrow 1-2 P-2 Q+4 P Q=1 \\
& \Longleftrightarrow(1-2 P)(1-2 Q)=1 .
\end{aligned}
$$

Lemma 2.2. The map $\sigma: K \rightarrow M$ is an isomorphism of groups.
Proof. Note that σ maps the element $1+(x-1) P$ of K to the element $1-2 P$ of M. It is then easy to show that σ is injective. It follows from Lemma 2.1 that σ is surjective.

Summarizing, we have the following diagram of groups:

Theorem 2.3. $U\left(\mathbb{Z} G^{*}\right)=K \rtimes U(\mathbb{Z} G) \cong M \rtimes U(\mathbb{Z} G)$.
Proof. The elements of the semi-direct product $M \rtimes U(\mathbb{Z} G)$ should be viewed as ordered pairs (u, w), where $u \in M$ and $w \in U(\mathbb{Z} G)$. If $k \in K$ and $w \in U(\mathbb{Z} G)$, then the isomorphism maps $k w$ to $(\sigma(k), w)$ with the action of $U(\mathbb{Z} G)$ on M induced by conjugation in $U(\mathbb{Z} G)$.

The problem of describing $U\left(\mathbb{Z} G^{*}\right)$ has been reduced to the problem of describing M. In the next section, we apply Theorem 2.3 and resolve a conjecture involving $U\left(\mathbb{Z} G^{*}\right)$, where G^{*} is a particular non-abelian group of order 24 .

3. Resolution of a conjecture

It was shown by Jespers [8] that there are only four finite groups G with the property that G has a non-abelian free normal complement in $U_{1}(\mathbb{Z} G)$, namely $G=S_{3}, D_{4}$ (the dihedral group of order 8), $P=\left\langle a, b: a^{4}=1=b^{4}, b a b^{-1} a^{-1}=\right.$ $\left.a^{2}\right\rangle$, and the non-abelian group T (of order 12) described by the presentation

$$
T=\left\langle a, b: a^{6}=1, a^{3}=b^{2}, b a=a^{5} b\right\rangle .
$$

In $[9,11,17]$, the structure of $U\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$ is determined for $G=S_{3}, D_{4}$ and P. In this section, we disprove the following conjecture, first posed in [17]:
Conjecture. Let $T^{*}=T \times C_{2}$, where $T=\left\langle a, b: a^{6}=1, a^{3}=b^{2}, b a=a^{5} b\right\rangle$. Then, $U_{1}\left(\mathbb{Z} T^{*}\right) \cong\left[F_{33} \rtimes F_{5}\right] \rtimes T^{*}$, where F_{i} is a free group of rank i.

This is certainly a plausible conjecture. Later, it was shown in [12] that $U(\mathbb{Z}[T \times$ C_{2}]) is commensurable with a free-by-free group. We will show that if F_{33} is replaced with F_{97}, then a correct result is obtained.

In 1993, Parmenter [20] showed that $U_{1}(\mathbb{Z} T)=V \rtimes T$, where $V=\left\langle v_{1}, v_{2}, v_{3}\right.$, $\left.v_{4}, v_{5}\right\rangle$ is a free group of rank five. He also gave the generators of V to be:

$$
\begin{aligned}
& v_{1}=1+\left(1+a^{3}\right)\left(-a^{2}+b a^{2}\right)\left(1-a^{2}\right), \\
& v_{2}=1+\left(1+a^{3}\right)\left(-a^{2}+b a\right)\left(1-a^{2}\right), \\
& v_{3}=1+\left(1+a^{3}\right)\left(-a^{2}+b\right)\left(1-a^{2}\right), \\
& v_{4}=1+\left[-1+\left(1+a^{3}\right) a^{2}\left(a^{2}+b a^{2}\right)\right]\left(1-a^{2}\right), \\
& v_{5}=1+\left[-1-a^{2}+\left(1+a^{3}\right) a\left(1-a-2 b a^{2}\right)\right]\left(1-a^{2}\right) .
\end{aligned}
$$

Let us determine $\rho(V)$. It is straight-forward to verify the following facts. First, $\rho\left(v_{i}\right) \rho\left(v_{j}\right)=\rho\left(v_{j}\right) \rho\left(v_{i}\right)$, where $1 \leq i, j \leq 3$. Also, $\rho\left(v_{1}\right)^{2}=\rho\left(v_{2}\right)^{2}=\rho\left(v_{3}\right)^{2}=1$ and thus, $E=\left\langle\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right\rangle \cong C_{2} \times C_{2} \times C_{2}$. Now, calculations show that $a^{2} \rho\left(v_{1}\right) a^{4}=\rho\left(v_{2}\right), a^{2} \rho\left(v_{2}\right) a^{4}=\rho\left(v_{3}\right), a^{2} \rho\left(v_{3}\right) a^{4}=\rho\left(v_{1}\right), a^{2} \rho\left(v_{1}\right)=\rho\left(v_{4}\right)$, and $\left[\rho\left(v_{4}\right)\right]^{3} a^{4}=\rho\left(v_{5}\right)$. Thus, $\left\langle a^{2}, \rho\left(v_{1}\right)\right\rangle=\left\langle a^{2}, \rho\left(v_{2}\right)\right\rangle=\left\langle a^{2}, \rho\left(v_{3}\right)\right\rangle=\rho(V)$.
Lemma 3.1. $\rho(V)=E \rtimes\left\langle a^{2}\right\rangle$, a group of order 24.
Proof. Since $E=\left\langle\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right\rangle$ is normalized by $\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)$, and a^{2}, we have that $E \unlhd \rho(V)$. So, $E \cdot\left\langle a^{2}\right\rangle \leq \rho(V)$. In fact, $E \cdot\left\langle a^{2}\right\rangle=\rho(V)$ and
$E \cap\left\langle a^{2}\right\rangle=1$. Thus, $\rho(V)=E \rtimes\left\langle a^{2}\right\rangle \cong\left[C_{2} \times C_{2} \times C_{2}\right] \rtimes C_{3}$, a group of order 24.

Lemma 3.2. $\rho\left[U_{1}(\mathbb{Z} T)\right]=E \rtimes T$.
Proof. Clearly, $\rho\left[U_{1}(\mathbb{Z} T)\right]=\rho(V \rtimes T)=\rho(V) \cdot T$. Since $E \unlhd \rho(V)$, we have that $\rho\left[U_{1}(\mathbb{Z} T)\right]=E \cdot T$. Since $a \rho\left(v_{1}\right) a^{5}=\rho\left(v_{3}\right), a \rho\left(v_{3}\right) a^{5}=\rho\left(v_{2}\right), a \rho\left(v_{2}\right) a^{5}=$ $\rho\left(v_{1}\right), b \rho\left(v_{1}\right) b^{3}=\rho\left(v_{1}\right), b \rho\left(v_{2}\right) b^{3}=\rho\left(v_{3}\right), b \rho\left(v_{3}\right) b^{3}=\rho\left(v_{2}\right)$, we see that E is normalized by T. Note that $E \cap T=1$. Hence, the lemma is established.

A remark should be made at this point. Since $\rho\left[U_{1}(\mathbb{Z} T)\right]$ has order 96, $|\rho(V)|=24$, and $|T|=12$, this implies that $|\rho(V) \cap T|=3$. But $\left\langle a^{2}\right\rangle \leq \rho(V) \cap T$, where the order of a^{2} is 3 . Hence, $\rho(V) \cap T=\left\langle a^{2}\right\rangle$. Now, we have the diagram:

Lemma 3.3. $\rho(V)=\left\langle\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right), \rho\left(v_{4}\right)\right\rangle=\left\{\left[\rho\left(v_{1}\right)\right]^{i_{1}} \cdot\left[\rho\left(v_{2}\right)\right]^{i_{2}} \cdot\left[\rho\left(v_{3}\right)\right]^{i_{3}}\right.$. $\left.\left[\rho\left(v_{4}\right)\right]^{i_{4}}: 0 \leq i_{1}, i_{2}, i_{3} \leq 1 ; 0 \leq i_{4} \leq 2\right\}$. Furthermore, this canonical representation is unique.
Proof. Note that $\rho(V)=\left\langle a^{2}, \rho\left(v_{1}\right)\right\rangle=\left\langle\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right), \rho\left(v_{4}\right)\right\rangle$. Also, calculations show the following:

$$
\begin{aligned}
& \rho\left(v_{4}\right) \rho\left(v_{1}\right)=\rho\left(v_{2}\right) a^{2} \rho\left(v_{1}\right)=\rho\left(v_{2}\right)^{2} a^{2}=a^{2}=\rho\left(v_{2}\right) \rho\left(v_{4}\right), \\
& \rho\left(v_{4}\right) \rho\left(v_{2}\right)=\rho\left(v_{2}\right) a^{2} \rho\left(v_{2}\right)=\rho\left(v_{2}\right) \rho\left(v_{3}\right) a^{2}=\rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{2}\right) \rho\left(v_{4}\right)=\rho\left(v_{3}\right) \rho\left(v_{4}\right), \\
& \rho\left(v_{4}\right) \rho\left(v_{3}\right)=\rho\left(v_{2}\right) a^{2} \rho\left(v_{3}\right)=\rho\left(v_{2}\right) \rho\left(v_{1}\right) a^{2}=\rho\left(v_{2}\right) \rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{4}\right)=\rho\left(v_{1}\right) \rho\left(v_{4}\right), \\
& \rho\left(v_{4}\right)^{2} \rho\left(v_{1}\right)=\rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2}, \\
& \rho\left(v_{4}\right)^{2} \rho\left(v_{2}\right)=\rho\left(v_{1}\right) \rho\left(v_{4}\right)^{2}, \\
& \rho\left(v_{4}\right)^{2} \rho\left(v_{3}\right)=\rho\left(v_{2}\right) \rho\left(v_{4}\right)^{2}, \\
& \rho\left(v_{4}\right)^{3} \rho\left(v_{1}\right)=\rho\left(v_{2}\right) \rho\left(v_{3}\right), \\
& \rho\left(v_{4}\right)^{3} \rho\left(v_{2}\right)=\rho\left(v_{1}\right) \rho\left(v_{3}\right), \\
& \rho\left(v_{4}\right)^{3} \rho\left(v_{3}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right), \\
& \rho\left(v_{4}\right)^{4} \rho\left(v_{1}\right)=\rho\left(v_{4}\right) \rho\left(v_{4}\right)^{3} \rho\left(v_{1}\right)=\rho\left(v_{1}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right), \\
& \rho\left(v_{4}\right)^{4} \rho\left(v_{2}\right)=\rho\left(v_{4}\right) \rho\left(v_{4}\right)^{3} \rho\left(v_{2}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{4}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \rho\left(v_{4}\right)^{4} \rho\left(v_{3}\right)=\rho\left(v_{4}\right) \rho\left(v_{4}\right)^{3} \rho\left(v_{3}\right)=\rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right), \\
& \rho\left(v_{4}\right)^{5} \rho\left(v_{1}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2} \rho\left(v_{1}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{4}\right)^{2}, \\
& \rho\left(v_{4}\right)^{5} \rho\left(v_{2}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2} \rho\left(v_{2}\right)=\rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2}, \\
& \rho\left(v_{4}\right)^{5} \rho\left(v_{3}\right)=\rho\left(v_{1}\right) \rho\left(v_{2}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2} \rho\left(v_{3}\right)=\rho\left(v_{1}\right) \rho\left(v_{3}\right) \rho\left(v_{4}\right)^{2} .
\end{aligned}
$$

Thus, every word in $\rho(V)$ can be put into the canonical form $\left[\rho\left(v_{1}\right)\right]^{i_{1}} \cdot\left[\rho\left(v_{2}\right)\right]^{i_{2}}$. $\left[\rho\left(v_{3}\right)\right]^{i_{3}} \cdot\left[\rho\left(v_{4}\right)\right]^{i_{4}}$, where $0 \leq i_{1}, i_{2}, i_{3} \leq 1$ and $0 \leq i_{4} \leq 2$. This representation is unique, since $|\rho(V)|=24$.

Lemma 3.4. Let $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right] \in E, t \in T$, with $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right]$. $t=1$. Then $t=1_{T}$.

Proof. Suppose that $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right] \cdot t=1=E \cap T$. Then, we have $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right]=t^{-1} \in T$ and $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right] \in E$. This implies that $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right] \in E \cap T=1_{T}$. Thus, $w\left[\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right]=1$, which implies that $t^{-1}=1_{T}$. Hence, $t=1_{T}$.
Lemma 3.5. $M^{+} \leq V \rtimes\left\langle a^{2}\right\rangle$.
Proof. Suppose that $w\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right) \cdot t \in M^{+}$, where $t \in T$. This implies that $\rho\left[w\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right) \cdot t\right]=1$. By Lemma 3.3, we have that $\left(\left[\rho\left(v_{1}\right)\right]^{i_{1}}\right.$. $\left.\left[\rho\left(v_{2}\right)\right]^{i_{2}} \cdot\left[\rho\left(v_{3}\right)\right]^{i_{3}} \cdot\left[\rho\left(v_{4}\right)\right]^{i_{4}}\right) \cdot t=1$, where $0 \leq i_{1}, i_{2}, i_{3} \leq 1 ; 0 \leq i_{4} \leq 2 ; t \in T$. Now, $\left[\rho\left(v_{1}\right)\right]^{i_{1}} \cdot\left[\rho\left(v_{2}\right)\right]^{i_{2}} \cdot\left[\rho\left(v_{3}\right)\right]^{i_{3}} \cdot\left[\rho\left(v_{4}\right)\right]^{i_{4}}$ has three possible forms:

$$
\begin{cases}\rho\left(v_{1}\right)^{i_{1}} \cdot \rho\left(v_{2}\right)^{i_{2}} \cdot \rho\left(v_{3}\right)^{i_{3}} \cdot\left[\rho\left(v_{2}\right) a^{2}\right], & \text { if } i_{4}=1 ; \\ \rho\left(v_{1}\right)^{i_{1}} \cdot \rho\left(v_{2}\right)^{i_{2}} \cdot \rho\left(v_{3}\right)^{i_{3}} \cdot\left[\rho\left(v_{2}\right) \rho\left(v_{3}\right) a^{4}\right], & \text { if } i_{4}=2 ; \\ \rho\left(v_{1}\right)^{i_{1}} \cdot \rho\left(v_{2}\right)^{i_{2}} \cdot \rho\left(v_{3}\right)^{i_{3}}, & \text { if } i_{4}=0 .\end{cases}
$$

Using Lemma 3.4, we have $\left(\left[\rho\left(v_{1}\right)\right]^{i_{1}} \cdot\left[\rho\left(v_{2}\right)\right]^{i_{2}} \cdot\left[\rho\left(v_{3}\right)\right]^{i_{3}} \cdot\left[\rho\left(v_{4}\right)\right]^{i_{4}}\right) \cdot t=1$ implies that $t \in\left\langle a^{2}\right\rangle$.

Lemma 3.6. M^{+}is a free group of rank 97.
Proof. Since $M^{+} \leq \rho^{-1}[E \rtimes T]$, where $E=\left\langle\rho\left(v_{1}\right), \rho\left(v_{2}\right), \rho\left(v_{3}\right)\right\rangle \cong C_{2} \times C_{2} \times C_{2}$, we see that M^{+}consists of the elements of the form

$$
\rho^{-1}\left[\rho\left(v_{1}\right)^{j_{1}} \rho\left(v_{2}\right)^{j_{2}} \rho\left(v_{3}\right)^{j_{3}} \cdot t\right]
$$

where $0 \leq j_{1}, j_{2}, j_{3} \leq 1$ and $t \in T$. Since M^{+}is an appropriate kernel of ρ, then $\rho\left(M^{+}\right)=1$. If we consider an element in M^{+}as

$$
\alpha=\rho^{-1}\left[\rho\left(v_{1}\right)^{j_{1}} \rho\left(v_{2}\right)^{j_{2}} \rho\left(v_{3}\right)^{j_{3}} \cdot t\right],
$$

we see that $\rho(\alpha)=\rho\left(v_{1}\right)^{j_{1}} \rho\left(v_{2}\right)^{j_{2}} \rho\left(v_{3}\right)^{j_{3}} \cdot t=1$. By Lemma 3.4, $t=1$. This implies that M^{+}consists of elements of the form

$$
\rho^{-1}\left[\rho\left(v_{1}\right)^{j_{1}} \rho\left(v_{2}\right)^{j_{2}} \rho\left(v_{3}\right)^{j_{3}}\right] \in V .
$$

Thus, $M^{+} \leq V$. Since V is a free group, the Nielson-Schreier Theorem states that M^{+}is a free group. Note that $M^{+}=M^{+} \cap V$. Now, consider the induced isomorphism $\bar{\rho}: \frac{V}{M^{+} \cap V} \rightarrow E \rtimes\left\langle a^{2}\right\rangle$, which implies that $\left[V: M^{+} \cap V\right]=[V:$
M^{+}] $=24$. Since V is a free group of rank 5 , this implies that M^{+}is a free group of rank $(24)(5)-24+1=97$.

Theorem 3.7. Let $T^{*}=T \times C_{2}$, where $T=\left\langle a, b: a^{6}=1, a^{3}=b^{2}, b a=a^{5} b\right\rangle$. Then, $U_{1}\left(\mathbb{Z} T^{*}\right) \cong\left[F_{97} \rtimes F_{5}\right] \rtimes T^{*}$, where F_{i} is a free group of rank i.
Proof. Invoking Theorem 2.3, we obtain $U_{1}\left(\mathbb{Z}\left[T \times C_{2}\right]\right)=K \rtimes(V \rtimes T) \cong$ $M \rtimes(V \rtimes T)=\left[M^{+} \times C_{2}\right] \rtimes(V \rtimes T)=\left[M^{+} \rtimes V\right] \rtimes\left(T \times C_{2}\right)=\left[F_{97} \rtimes F_{5}\right] \rtimes\left(T \times C_{2}\right)$, where F_{i} is a free group of rank i.

Acknowledgments. The authors are grateful for the valuable comments made by the referee.

References

[1] P. J. Allen and C. Hobby, A characterization of units in $\mathbb{Z}\left[A_{4}\right]$, J. Algebra 66 (1980), no. 2, 534-543.
[2], A characterization of units in $\mathbb{Z}\left[S_{4}\right]$, Comm. Algebra 16 (1988), no. 7, 14791505.
[3] T. Bilgin, Characterization of $U_{1}\left(\mathbb{Z} C_{12}\right)$, Int. J. Pure Appl. Math. 14 (2004), no. 4, 531-535.
[4] S. Galovich, I. Reiner, and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematika 19 (1972), 105-111.
[5] G. Higman, Units in Group Rings, D. Phil. Thesis, University of Oxford, Oxford, 1940.
[6] , The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
[7] I. Hughes and K. R. Pearson, The group of units of the integral group ring $\mathbb{Z} S_{3}$, Canad. Math. Bull. 15 (1972), 529-534.
[8] E. Jespers, Free normal complements and the unit group of integral group rings, Proc. Amer. Math. Soc. 122 (1994), no. 1, 59-66.
[9] , Bicyclic units in some integral group rings, Canad. Math. Bull. 38 (1995), no. 1, 80-86.
[10] E. Jespers and M. M. Parmenter, Bicyclic units in $\mathbb{Z} S_{3}$, Bull. Soc. Math. Belg. Sér. B 44 (1992), no. 2, 141-146.
[11] , Units of group rings of groups of order 16, Glasgow Math. J. 35 (1993), no. 3, 367-379.
[12] E. Jespers, A. Pita, Á. del Río, M. Ruiz, and P. Zalesskii, Groups of units of integral group rings commensurable with direct products of free-by-free groups, Adv. Math. 212 (2007), no. 2, 692-722.
[13] G. Karpilovsky, Commutative Group Algebras, Marcel Dekker, New York, 1983.
[14] I. G. Kelebek and T. Bilgin, Characterization of $U_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$, Eur. J. Pure Appl. Math. 7 (2014), no. 4, 462-471.
[15] O. Kusmus and I. H. Denizler, Construction of units in $\mathbb{Z} C_{24}$, Int. J. Algebra. 8, 471477. - preprint.
[16] Y. Li, Units of $\mathbb{Z}\left(G \times C_{2}\right)$, Quaestiones Mathematicae 21 (1998), 201-218.
[17] R. M. Low, Units in Integral Group Rings for Direct Products, Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, 1998.
[18] , On the units of the integral group ring $\mathbb{Z}\left[G \times C_{p}\right]$, J. Algebra Appl. 7 (2008), no. 3, 393-403.
[19] M. M. Parmenter, Torsion-free normal complements in unit groups of integral group rings, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 4, 113-118.
[20] , Free torsion-free normal complements in integral group rings, Commun. Algebra 21 (1993), no. 10, 3611-3617.
[21] D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981), no. 1, 213-239.
[22] J. Ritter and S. K. Sehgal, Integral group rings of some p-groups, Canad. J. Math. 34 (1982), no. 1, 233-246.
[23] , Units of group rings of solvable and Frobenius groups over large rings of cyclotomic integers, J. Algebra 158 (1993), no. 1, 116-129.
[24] S. K. Sehgal, Units in Integral Group Rings, Longman Scientific \& Technical, Essex, 1993.

Tevfik Bilgin
Department of Mathematics
Fatin University
Istanbul, Turkey
E-mail address: tbilgin@fatih.edu.tr
Omer Kusmus
Department of Mathematics
Yüzüncü Y l University
Van, Turkey
E-mail address: omerkusmus@yyu.edu.tr
Richard M. Low
Department of Mathematics
San Jose State University
San Jose, CA 95192, USA
E-mail address: richard.low@sjsu.edu

[^0]: Received July 4, 2015; Revised September 16, 2015.
 2010 Mathematics Subject Classification. Primary 16S34.
 Key words and phrases. integral group ring, unit problem.

