A CHARACTERIZATION OF THE UNIT GROUP IN $\mathbb{Z}[T \times C_2]$

TEVFIK BILGIN, OMER KUSMUS, AND RICHARD M. LOW

ABSTRACT. Describing the group of units $U(\mathbb{Z}G)$ of the integral group ring $\mathbb{Z}G$, for a finite group G, is a classical and open problem. In this note, we show that $U_1(\mathbb{Z}[T \times C_2]) \cong [F_{97} \rtimes F_5] \rtimes [T \times C_2]$, where $T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle$ and F_{97} , F_5 are free groups of ranks 97 and 5, respectively.

1. Introduction

Given a finite group G and the ring of integers \mathbb{Z} , we denote the integral group ring as $\mathbb{Z}G$. Its elements are all finite formal sums

$$\sum_{g \in G} r_g g, \text{ where } r_g \in \mathbb{Z}.$$

There is a surjective ring homomorphism $\epsilon: \mathbb{Z}G \to \mathbb{Z}$, defined by

$$\sum_{g \in G} r_g g \longmapsto \sum_{g \in G} r_g.$$

The ring homomorphism ϵ is called the *augmentation map* and its kernel $\Delta_{\mathbb{Z}}(G) = \langle g-1 : g \in G \rangle$ is the *augmentation ideal*. We will denote the group of units of $\mathbb{Z}G$ by $U(\mathbb{Z}G)$. $U_1(\mathbb{Z}G)$ will denote the units of augmentation one in $U(\mathbb{Z}G)$. Thus, $U_1(\mathbb{Z}G)$ is a normal subgroup of $U(\mathbb{Z}G)$ and $\pm U_1(\mathbb{Z}G) = U(\mathbb{Z}G)$. Observe that $\pm G \leq U(\mathbb{Z}G)$. The elements $\pm G$ are called the *trivial units* of $\mathbb{Z}G$.

Describing the units of the integral group ring is a classical and difficult problem. Over the years, it has drawn the attention of those working in the areas of algebra, number theory, and algebraic topology. Most descriptions of $U(\mathbb{Z}G)$ in the mathematical literature either give an explicit description of the units, the general structure of $U(\mathbb{Z}G)$, or a subgroup of finite index of the unit group $U(\mathbb{Z}G)$. These results were often obtained by using techniques from representation theory and algebraic number theory.

 $\odot 2016$ Korean Mathematical Society

Received July 4, 2015; Revised September 16, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ {\rm Primary}\ 16{\rm S}34.$

Key words and phrases. integral group ring, unit problem.

In 1940, substantial work on the unit problem was done by Graham Higman [5, 6]. He first showed that if $U(\mathbb{Z}G) = \pm G$, then $U(\mathbb{Z}[G \times C_2]) = \pm (G \times C_2)$. Using this, he showed that $U(\mathbb{Z}G) = \pm G \iff G$ is abelian of exponent 2, 3, 4, or 6 or $G = E \times K_8$ where K_8 is the quaternion group of order 8 and E is an elementary abelian 2-group. Furthermore, Higman gave a general structure theorem for $U(\mathbb{Z}A)$, where A is a finite abelian group. Other results include: A_4 and S_4 by Allen-Hobby [1, 2], D_{2p} by Passman-Smith [21], $G = C_p \rtimes C_q$, where q is a prime dividing p-1 by Galovitch-Reiner-Ullom [4], $|G| = p^3$ by Ritter-Sehgal [23], and $U(\mathbb{Z}S_3)$ by Hughes-Pearson [7]. Jespers and Parmenter [10] gave a more explicit description of $U(\mathbb{Z}S_3)$. In 1993, Jespers and Parmenter [11] completed the description of $U(\mathbb{Z}G)$ for all groups of order 16. Jespers [9], in 1995, gave a description of $U(\mathbb{Z}G)$, for the dihedral group of order 12 and for $G = D_8 \times C_2$. More recently, Bilgin [3] gave a characterization of $U_1(\mathbb{Z}C_{12})$. Kusmus and Denizler [15] gave a construction of $U(\mathbb{Z}C_{24})$. Kelebek and Bilgin [14] described the structure of $U_1(\mathbb{Z}[C_n \times K_4])$. The interested reader is directed to Sehgal's [24] comprehensive survey on the unit problem in integral group rings.

In [17, 18], a general algebraic framework was developed to study $U(\mathbb{Z}G^*)$, where $G^* = G \times C_p$ with p prime. In the following sections of this note, we focus on the case where p = 2 and then resolve a conjecture found in [17].

2. $U(\mathbb{Z}[G \times C_2])$

Here, we obtain a result which helps us to answer the following question: Assuming that we have a good description of $U(\mathbb{Z}G)$, can we obtain a description of $U(\mathbb{Z}G^*)$, where $G^* = G \times C_2$?

Let $G^* = G \times \langle x \rangle$, $x^2 = 1$, with |G| = n. Decomposing G^* into two cosets, we have that $G^* = G \cup xG = \{g_1, g_2, \ldots, g_n, xg_1, \ldots, xg_n\}$. Thus, $\mathbb{Z}G^* = \mathbb{Z}G \oplus x\mathbb{Z}G$, a direct sum of abelian groups. Here, the equal sign denotes equality as sets. Now, consider the surjective group homomorphism $\pi : G^* \to G$ defined by $g \mapsto g, x \mapsto 1$. This induces a ring homomorphism $\pi : \mathbb{Z}G^* \to \mathbb{Z}G$; where $\pi(P_1 + xP_2) = P_1 + P_2$, and $P_1, P_2 \in \mathbb{Z}G$. At the ring level, $\operatorname{Ker}(\pi) = K^* = (x - 1)\mathbb{Z}G$. So, we have the sequence of maps

$$K^* \xrightarrow{\iota} \mathbb{Z}G^* \xrightarrow{\pi} \mathbb{Z}G.$$

Restricting π to the group of units, we obtain the split exact sequence of groups:

$$K \xrightarrow{\iota} U(\mathbb{Z}G^*) \xrightarrow{\pi} U(\mathbb{Z}G),$$

where $K = \text{Ker}(\pi)$. Hence, $U(\mathbb{Z}G^*) = K \rtimes U(\mathbb{Z}G)$. Note that $K = U(\mathbb{Z}G^*) \cap (1 + K^*)$. Thus, a unit in K has the form 1 + (x - 1)P, where $P \in \mathbb{Z}G$, and has an inverse 1 + (x - 1)Q, where $Q \in \mathbb{Z}G$.

Also, let us consider the surjective ring homomorphism $\rho : \mathbb{Z}G \twoheadrightarrow \mathbb{Z}_2G$, where ρ reduces the coefficients modulo 2. The kernel of ρ , say M^* (as an ideal), is $M^* = 2\mathbb{Z}G$. Thus, we have the following sequence of maps:

$$M^* \xrightarrow{\iota} \mathbb{Z}G \xrightarrow{\rho} \mathbb{Z}_2G.$$

Furthermore, ρ induces the following exact sequence of groups, which does not necessarily split:

$$M \xrightarrow{\iota} U(\mathbb{Z}G) \xrightarrow{\rho} U(\mathbb{Z}_2G),$$

where M is the kernel of the group homomorphism ρ . Observe that $M = U(\mathbb{Z}G) \cap (1 + M^*)$. Thus, a unit in M has the form 1 + 2P, where $P \in \mathbb{Z}G$ and has an inverse 1 + 2Q, where $Q \in \mathbb{Z}G$. Notice that here at the group level, ρ is not necessarily surjective.

Since $G^* = G \times \langle x \rangle$ and $x^2 = 1$, we have the group homomorphism $\sigma : G^* \to U(\mathbb{Z}G)$, where $\sigma(g) = g$ and $\sigma(x) = -1$. This extends to a ring homomorphism $\sigma : \mathbb{Z}G^* \to \mathbb{Z}G$. So, we have the following diagram of rings:

Observe that $\rho \circ \pi = \rho \circ \sigma$. Hence, $\sigma(K^*) \subseteq M^*$. Note that σ maps the element $1 + (x-1)P \in K$ to the element $1 - 2P \in M$, where $P \in \mathbb{Z}G$. Thus, $\sigma(K) \subseteq M$.

Lemma 2.1. Let $G^* = G \times \langle x \rangle$, where x has order 2, u = 1 + (x - 1)P, v = 1 + (x - 1)Q, where P, $Q \in \mathbb{Z}G$. Then u and v are multiplicative inverses of each other in $K \iff 1 - 2P$ and 1 - 2Q are multiplicative inverses of each other in $U(\mathbb{Z}G)$.

Proof. Let $u, v \in K$; with uv = 1. It is straightforward to see that uv = 1 + (x - 1)(P + Q - 2PQ).

Hence,
$$uv = 1 \iff (x-1)(P+Q-2PQ) = 0$$

 $\iff (2PQ-P-Q) + (P+Q-2PQ)x = 0$
 $\iff 2PQ-P-Q = 0$
 $\iff 4PQ-2P-2Q = 0$
 $\iff 1-2P-2Q+4PQ = 1$
 $\iff (1-2P)(1-2Q) = 1.$

Lemma 2.2. The map $\sigma : K \to M$ is an isomorphism of groups.

Proof. Note that σ maps the element 1 + (x - 1)P of K to the element 1 - 2P of M. It is then easy to show that σ is injective. It follows from Lemma 2.1 that σ is surjective.

Summarizing, we have the following diagram of groups:

$$\begin{array}{cccc} K & \stackrel{\iota}{\longrightarrow} & U(\mathbb{Z}G^*) & \stackrel{n}{\longrightarrow} & U(\mathbb{Z}G) \\ \cong & & \sigma & & \rho \\ M & \stackrel{\iota}{\longrightarrow} & U(\mathbb{Z}G) & \stackrel{\rho}{\longrightarrow} & U(\mathbb{Z}_2G) \end{array}$$

Theorem 2.3. $U(\mathbb{Z}G^*) = K \rtimes U(\mathbb{Z}G) \cong M \rtimes U(\mathbb{Z}G).$

Proof. The elements of the semi-direct product $M \rtimes U(\mathbb{Z}G)$ should be viewed as ordered pairs (u, w), where $u \in M$ and $w \in U(\mathbb{Z}G)$. If $k \in K$ and $w \in U(\mathbb{Z}G)$, then the isomorphism maps kw to $(\sigma(k), w)$ with the action of $U(\mathbb{Z}G)$ on M induced by conjugation in $U(\mathbb{Z}G)$.

The problem of describing $U(\mathbb{Z}G^*)$ has been reduced to the problem of describing M. In the next section, we apply Theorem 2.3 and resolve a conjecture involving $U(\mathbb{Z}G^*)$, where G^* is a particular non-abelian group of order 24.

3. Resolution of a conjecture

It was shown by Jespers [8] that there are only four finite groups G with the property that G has a non-abelian free normal complement in $U_1(\mathbb{Z}G)$, namely $G = S_3$, D_4 (the dihedral group of order 8), $P = \langle a, b : a^4 = 1 = b^4, bab^{-1}a^{-1} = a^2 \rangle$, and the non-abelian group T (of order 12) described by the presentation

$$T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle.$$

In [9, 11, 17], the structure of $U(\mathbb{Z}[G \times C_2])$ is determined for $G = S_3, D_4$ and P. In this section, we disprove the following conjecture, first posed in [17]:

Conjecture. Let $T^* = T \times C_2$, where $T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle$. Then, $U_1(\mathbb{Z}T^*) \cong [F_{33} \rtimes F_5] \rtimes T^*$, where F_i is a free group of rank *i*.

This is certainly a plausible conjecture. Later, it was shown in [12] that $U(\mathbb{Z}[T \times C_2])$ is commensurable with a free-by-free group. We will show that if F_{33} is replaced with F_{97} , then a correct result is obtained.

In 1993, Parmenter [20] showed that $U_1(\mathbb{Z}T) = V \rtimes T$, where $V = \langle v_1, v_2, v_3, v_4, v_5 \rangle$ is a free group of rank five. He also gave the generators of V to be:

$$v_{1} = 1 + (1 + a^{3})(-a^{2} + ba^{2})(1 - a^{2}),$$

$$v_{2} = 1 + (1 + a^{3})(-a^{2} + ba)(1 - a^{2}),$$

$$v_{3} = 1 + (1 + a^{3})(-a^{2} + b)(1 - a^{2}),$$

$$v_{4} = 1 + [-1 + (1 + a^{3})a^{2}(a^{2} + ba^{2})](1 - a^{2}),$$

$$v_{5} = 1 + [-1 - a^{2} + (1 + a^{3})a(1 - a - 2ba^{2})](1 - a^{2}).$$

Let us determine $\rho(V)$. It is straight-forward to verify the following facts. First, $\rho(v_i)\rho(v_j) = \rho(v_j)\rho(v_i)$, where $1 \le i, j \le 3$. Also, $\rho(v_1)^2 = \rho(v_2)^2 = \rho(v_3)^2 = 1$ and thus, $E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle \cong C_2 \times C_2 \times C_2$. Now, calculations show that $a^2\rho(v_1)a^4 = \rho(v_2), a^2\rho(v_2)a^4 = \rho(v_3), a^2\rho(v_3)a^4 = \rho(v_1), a^2\rho(v_1) = \rho(v_4)$, and $[\rho(v_4)]^3a^4 = \rho(v_5)$. Thus, $\langle a^2, \rho(v_1) \rangle = \langle a^2, \rho(v_2) \rangle = \langle a^2, \rho(v_3) \rangle = \rho(V)$.

Lemma 3.1. $\rho(V) = E \rtimes \langle a^2 \rangle$, a group of order 24.

Proof. Since $E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle$ is normalized by $\rho(v_1), \rho(v_2), \rho(v_3)$, and a^2 , we have that $E \leq \rho(V)$. So, $E \cdot \langle a^2 \rangle \leq \rho(V)$. In fact, $E \cdot \langle a^2 \rangle = \rho(V)$ and

 $E \cap \langle a^2 \rangle = 1$. Thus, $\rho(V) = E \rtimes \langle a^2 \rangle \cong [C_2 \times C_2 \times C_2] \rtimes C_3$, a group of order 24.

Lemma 3.2. $\rho[U_1(\mathbb{Z}T)] = E \rtimes T$.

Proof. Clearly, $\rho[U_1(\mathbb{Z}T)] = \rho(V \rtimes T) = \rho(V) \cdot T$. Since $E \trianglelefteq \rho(V)$, we have that $\rho[U_1(\mathbb{Z}T)] = E \cdot T$. Since $a\rho(v_1)a^5 = \rho(v_3), a\rho(v_3)a^5 = \rho(v_2), a\rho(v_2)a^5 = \rho(v_1), b\rho(v_1)b^3 = \rho(v_1), b\rho(v_2)b^3 = \rho(v_3), b\rho(v_3)b^3 = \rho(v_2)$, we see that E is normalized by T. Note that $E \cap T = 1$. Hence, the lemma is established. \Box

A remark should be made at this point. Since $\rho[U_1(\mathbb{Z}T)]$ has order 96, $|\rho(V)| = 24$, and |T| = 12, this implies that $|\rho(V) \cap T| = 3$. But $\langle a^2 \rangle \leq \rho(V) \cap T$, where the order of a^2 is 3. Hence, $\rho(V) \cap T = \langle a^2 \rangle$. Now, we have the diagram:

Lemma 3.3. $\rho(V) = \langle \rho(v_1), \rho(v_2), \rho(v_3), \rho(v_4) \rangle = \{ [\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4} : 0 \le i_1, i_2, i_3 \le 1; 0 \le i_4 \le 2 \}.$ Furthermore, this canonical representation is unique.

Proof. Note that $\rho(V) = \langle a^2, \rho(v_1) \rangle = \langle \rho(v_1), \rho(v_2), \rho(v_3), \rho(v_4) \rangle$. Also, calculations show the following:

$$\begin{split} \rho(v_4)\rho(v_1) &= \rho(v_2)a^2\rho(v_1) = \rho(v_2)^2a^2 = a^2 = \rho(v_2)\rho(v_4), \\ \rho(v_4)\rho(v_2) &= \rho(v_2)a^2\rho(v_2) = \rho(v_2)\rho(v_3)a^2 = \rho(v_2)\rho(v_3)\rho(v_2)\rho(v_4) = \rho(v_3)\rho(v_4), \\ \rho(v_4)\rho(v_3) &= \rho(v_2)a^2\rho(v_3) = \rho(v_2)\rho(v_1)a^2 = \rho(v_2)\rho(v_1)\rho(v_2)\rho(v_4) = \rho(v_1)\rho(v_4), \\ \rho(v_4)^2\rho(v_1) &= \rho(v_3)\rho(v_4)^2, \\ \rho(v_4)^2\rho(v_2) &= \rho(v_1)\rho(v_4)^2, \\ \rho(v_4)^2\rho(v_3) &= \rho(v_2)\rho(v_4)^2, \\ \rho(v_4)^3\rho(v_1) &= \rho(v_2)\rho(v_3), \\ \rho(v_4)^3\rho(v_2) &= \rho(v_1)\rho(v_3), \\ \rho(v_4)^3\rho(v_3) &= \rho(v_1)\rho(v_2), \\ \rho(v_4)^4\rho(v_1) &= \rho(v_4)\rho(v_4)^3\rho(v_1) = \rho(v_1)\rho(v_3)\rho(v_4), \\ \rho(v_4)^4\rho(v_2) &= \rho(v_4)\rho(v_4)^3\rho(v_2) = \rho(v_1)\rho(v_2)\rho(v_4), \end{split}$$

$$\rho(v_4)^4 \rho(v_3) = \rho(v_4)\rho(v_4)^3 \rho(v_3) = \rho(v_2)\rho(v_3)\rho(v_4),$$

$$\rho(v_4)^5 \rho(v_1) = \rho(v_1)\rho(v_2)\rho(v_3)\rho(v_4)^2\rho(v_1) = \rho(v_1)\rho(v_2)\rho(v_4)^2,$$

$$\rho(v_4)^5 \rho(v_2) = \rho(v_1)\rho(v_2)\rho(v_3)\rho(v_4)^2\rho(v_2) = \rho(v_2)\rho(v_3)\rho(v_4)^2,$$

$$\rho(v_4)^5 \rho(v_3) = \rho(v_1)\rho(v_2)\rho(v_3)\rho(v_4)^2\rho(v_3) = \rho(v_1)\rho(v_3)\rho(v_4)^2.$$

Thus, every word in $\rho(V)$ can be put into the canonical form $[\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4}$, where $0 \leq i_1, i_2, i_3 \leq 1$ and $0 \leq i_4 \leq 2$. This representation is unique, since $|\rho(V)| = 24$.

Lemma 3.4. Let $w[\rho(v_1), \rho(v_2), \rho(v_3)] \in E, t \in T$, with $w[\rho(v_1), \rho(v_2), \rho(v_3)] \cdot t = 1$. Then $t = 1_T$.

Proof. Suppose that $w[\rho(v_1), \rho(v_2), \rho(v_3)] \cdot t = 1 = E \cap T$. Then, we have $w[\rho(v_1), \rho(v_2), \rho(v_3)] = t^{-1} \in T$ and $w[\rho(v_1), \rho(v_2), \rho(v_3)] \in E$. This implies that $w[\rho(v_1), \rho(v_2), \rho(v_3)] \in E \cap T = 1_T$. Thus, $w[\rho(v_1), \rho(v_2), \rho(v_3)] = 1$, which implies that $t^{-1} = 1_T$. Hence, $t = 1_T$. \Box

Lemma 3.5. $M^+ \leq V \rtimes \langle a^2 \rangle$.

Proof. Suppose that $w(v_1, v_2, v_3, v_4, v_5) \cdot t \in M^+$, where $t \in T$. This implies that $\rho[w(v_1, v_2, v_3, v_4, v_5) \cdot t] = 1$. By Lemma 3.3, we have that $([\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4}) \cdot t = 1$, where $0 \le i_1, i_2, i_3 \le 1; 0 \le i_4 \le 2; t \in T$. Now, $[\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4}$ has three possible forms:

$$\begin{cases} \rho(v_1)^{i_1} \cdot \rho(v_2)^{i_2} \cdot \rho(v_3)^{i_3} \cdot [\rho(v_2)a^2], & \text{if } i_4 = 1; \\ \rho(v_1)^{i_1} \cdot \rho(v_2)^{i_2} \cdot \rho(v_3)^{i_3} \cdot [\rho(v_2)\rho(v_3)a^4], & \text{if } i_4 = 2; \\ \rho(v_1)^{i_1} \cdot \rho(v_2)^{i_2} \cdot \rho(v_3)^{i_3}, & \text{if } i_4 = 0. \end{cases}$$

Using Lemma 3.4, we have $([\rho(v_1)]^{i_1} \cdot [\rho(v_2)]^{i_2} \cdot [\rho(v_3)]^{i_3} \cdot [\rho(v_4)]^{i_4}) \cdot t = 1$ implies that $t \in \langle a^2 \rangle$. \Box

Lemma 3.6. M^+ is a free group of rank 97.

Proof. Since $M^+ \leq \rho^{-1}[E \rtimes T]$, where $E = \langle \rho(v_1), \rho(v_2), \rho(v_3) \rangle \cong C_2 \times C_2 \times C_2$, we see that M^+ consists of the elements of the form

$$\rho^{-1}[\rho(v_1)^{j_1}\rho(v_2)^{j_2}\rho(v_3)^{j_3}\cdot t],$$

where $0 \leq j_1, j_2, j_3 \leq 1$ and $t \in T$. Since M^+ is an appropriate kernel of ρ , then $\rho(M^+) = 1$. If we consider an element in M^+ as

$$\alpha = \rho^{-1}[\rho(v_1)^{j_1}\rho(v_2)^{j_2}\rho(v_3)^{j_3} \cdot t],$$

we see that $\rho(\alpha) = \rho(v_1)^{j_1} \rho(v_2)^{j_2} \rho(v_3)^{j_3} \cdot t = 1$. By Lemma 3.4, t = 1. This implies that M^+ consists of elements of the form

$$\rho^{-1}[\rho(v_1)^{j_1}\rho(v_2)^{j_2}\rho(v_3)^{j_3}] \in V.$$

Thus, $M^+ \leq V$. Since V is a free group, the Nielson-Schreier Theorem states that M^+ is a free group. Note that $M^+ = M^+ \cap V$. Now, consider the induced isomorphism $\bar{\rho} : \frac{V}{M^+ \cap V} \twoheadrightarrow E \rtimes \langle a^2 \rangle$, which implies that $[V : M^+ \cap V] = [V :$

 M^+] = 24. Since V is a free group of rank 5, this implies that M^+ is a free group of rank (24)(5) - 24 + 1 = 97.

Theorem 3.7. Let $T^* = T \times C_2$, where $T = \langle a, b : a^6 = 1, a^3 = b^2, ba = a^5b \rangle$. Then, $U_1(\mathbb{Z}T^*) \cong [F_{97} \rtimes F_5] \rtimes T^*$, where F_i is a free group of rank *i*.

Proof. Invoking Theorem 2.3, we obtain $U_1(\mathbb{Z}[T \times C_2]) = K \rtimes (V \rtimes T) \cong M \rtimes (V \rtimes T) = [M^+ \times C_2] \rtimes (V \rtimes T) = [M^+ \rtimes V] \rtimes (T \times C_2) = [F_{97} \rtimes F_5] \rtimes (T \times C_2),$ where F_i is a free group of rank *i*.

Acknowledgments. The authors are grateful for the valuable comments made by the referee.

References

- [1] P. J. Allen and C. Hobby, A characterization of units in $\mathbb{Z}[A_4]$, J. Algebra **66** (1980), no. 2, 534–543.
- [2] _____, A characterization of units in $\mathbb{Z}[S_4]$, Comm. Algebra 16 (1988), no. 7, 1479–1505.
- [3] T. Bilgin, Characterization of $U_1(\mathbb{Z}C_{12})$, Int. J. Pure Appl. Math. 14 (2004), no. 4, 531–535.
- [4] S. Galovich, I. Reiner, and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematika 19 (1972), 105–111.
- [5] G. Higman, Units in Group Rings, D. Phil. Thesis, University of Oxford, Oxford, 1940.
- [6] _____, The units of group rings, Proc. London Math. Soc. 46 (1940), 231–248.
- [7] I. Hughes and K. R. Pearson, The group of units of the integral group ring ZS₃, Canad. Math. Bull. 15 (1972), 529–534.
- [8] E. Jespers, Free normal complements and the unit group of integral group rings, Proc. Amer. Math. Soc. 122 (1994), no. 1, 59–66.
- [9] _____, Bicyclic units in some integral group rings, Canad. Math. Bull. 38 (1995), no. 1, 80–86.
- [10] E. Jespers and M. M. Parmenter, *Bicyclic units in* $\mathbb{Z}S_3$, Bull. Soc. Math. Belg. Sér. B 44 (1992), no. 2, 141–146.
- [11] _____, Units of group rings of groups of order 16, Glasgow Math. J. 35 (1993), no. 3, 367–379.
- [12] E. Jespers, A. Pita, Á. del Río, M. Ruiz, and P. Zalesskii, Groups of units of integral group rings commensurable with direct products of free-by-free groups, Adv. Math. 212 (2007), no. 2, 692–722.
- [13] G. Karpilovsky, Commutative Group Algebras, Marcel Dekker, New York, 1983.
- [14] I. G. Kelebek and T. Bilgin, Characterization of $U_1(\mathbb{Z}[C_n \times K_4])$, Eur. J. Pure Appl. Math. 7 (2014), no. 4, 462–471.
- [15] O. Kusmus and I. H. Denizler, Construction of units in ZC₂₄, Int. J. Algebra. 8, 471– 477. – preprint.
- [16] Y. Li, Units of $\mathbb{Z}(G \times C_2)$, Quaestiones Mathematicae **21** (1998), 201–218.
- [17] R. M. Low, Units in Integral Group Rings for Direct Products, Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, 1998.
- [18] _____, On the units of the integral group ring $\mathbb{Z}[G \times C_p]$, J. Algebra Appl. 7 (2008), no. 3, 393–403.
- [19] M. M. Parmenter, Torsion-free normal complements in unit groups of integral group rings, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 4, 113–118.
- [20] _____, Free torsion-free normal complements in integral group rings, Commun. Algebra 21 (1993), no. 10, 3611–3617.

- [21] D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981), no. 1, 213–239.
- [22] J. Ritter and S. K. Sehgal, Integral group rings of some p-groups, Canad. J. Math. 34 (1982), no. 1, 233–246.
- [23] _____, Units of group rings of solvable and Frobenius groups over large rings of cyclotomic integers, J. Algebra 158 (1993), no. 1, 116–129.
- [24] S. K. Sehgal, Units in Integral Group Rings, Longman Scientific & Technical, Essex, 1993.

TEVFIK BILGIN DEPARTMENT OF MATHEMATICS FATIH UNIVERSITY ISTANBUL, TURKEY *E-mail address*: tbilgin@fatih.edu.tr

Omer Kusmus Department of Mathematics Yüzüncü Yıl University Van, Turkey *E-mail address:* omerkusmus@yyu.edu.tr

RICHARD M. LOW DEPARTMENT OF MATHEMATICS SAN JOSE STATE UNIVERSITY SAN JOSE, CA 95192, USA *E-mail address:* richard.low@sjsu.edu