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BOUNDED PARTIAL QUOTIENTS OF SOME CUBIC

POWER SERIES WITH BINARY COEFFICIENTS

Khalil Ayadi, Salah Beldi, and Kwankyu Lee

Abstract. It is a surprising but now well-known fact that there exist
algebraic power series of degree higher than two with partial quotients
of bounded degrees in their continued fraction expansions, while there is
no single algebraic real number known with bounded partial quotients.
However, it seems that these special algebraic power series are quite rare
and it is hard to determine their continued fraction expansions explicitly.
To the short list of known examples, we add a new family of cubic power
series with bounded partial quotients.

1. Introduction

Khinchin [4] conjectured that no algebraic real number of degree higher than
two has bounded partial quotients in its continued fraction expansion. Then
betraying the innocent expectation that the same would be true for algebraic
power series, Baum and Sweet [1] found an example of cubic power series over
F2 with partial quotients of bounded degree. Then it was realised, first by Mills
and Robbins [11], that irrational power series with coefficients in a finite field
F with characteristic p that are roots of equations of the form

x =
Axpr

+B

Cxpr +D
, r ≥ 0, A,B,C,D ∈ F[X ]

loosely correspond to the quadratic real numbers, and tends to have regular
patterns in their continued fraction expansions. These are now called hyper-
quadratic power series. Hyperquadratic power series are fixed points under the
composition of a linear fractional transformation and a Frobenius map of F.

It is known [2, 15] that if a hyperquadratic power series does not have
bounded partial quotients, then it has partial quotients of rapidly increasing
degrees. So it is either badly approximable or very well approximable by ra-
tional functions. Hence the cubic power series of Baum and Sweet belongs to
the class of badly approximable hyperquadratic power series over the field F2.
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Furthermore Mills and Robbins [11] found hyperquadratic power series only
with partial quotients of degree one over Fp for any odd prime p. Following
these pioneering works, much efforts have been put to classify hyperquadratic
power series in terms of their approximableness by rational functions [5, 14].

Through several works [3, 6, 7, 8, 9], Lasjaunias and his coauthors have
showed that there exist large families of hyperquadratic power series with all
partial quotients of degree 1, defined for finite fields of any characteristic. For
finite fields of characteristic 2, Thakur [14] constructed some non-quadratic
power series of even degree with bounded partial quotients. However, the
classification problem of hyperquadratic power series is far from complete and
more examples are yet to be explored.

In this paper, we provide another interesting family of cubic power series
of bounded partial quotients over F2, defined by equation (9) in Theorem 6.
Although this is a big family of power series satisfying a cubic equation of a
special form, we prove that they have bounded partial quotients using similar
methods to those used by Baum and Sweet for their single cubic equation
Xx3 + x + X = 0. In this sense, our family of power series seems akin to
the Baum-Sweet cubic. Another peculiarity of the family is that the power
series satisfying a “degenerate” equation of (9) has actually unbounded partial
quotients. See Corollary 8. Thus in this “compactified” family of cubic power
series, we observe that the corner case of power series with bounded partial
quotients is actually a power series with unbounded partial quotients.

In Section 2, we review basic facts and notations of the theory of continued
fraction expansions of power series. Here we collect several results from Baum
and Sweet [1], and Mkaouar [12], which we rely on in the following sections.
In Section 3, we present our main results. Lemma 4 is an easy consequence of
Lasjaunias’ previous result in [5], recalled as Theorem 2 in this paper. We put
most efforts to prove Theorem 5. Then our main result, Theorem 6, follows
combining Lemma 4 and Theorem 5. In Section 4, we show that the algebraic
power series deliberately excluded from Theorem 5 and Theorem 6 have ac-
tually unbounded partial quotients in their continued fraction expansions. In
Section 5, we exhibit the continued fraction expansions of two simplest alge-
braic power series from Theorem 6.

2. Preliminaries

Let F be a finite field. Let F((X−1)) denote the field of formal power series
over F. For a nonzero power series

α =
∑

i≤n0

ciX
i ∈ F((X−1)), n0 ∈ Z, cn0

6= 0,

we define

deg(α) = n0, |α| = |X |n0 , ⌊α⌋ =
∑

0≤i

ciX
i,



BOUNDED PARTIAL QUOTIENTS OF SOME CUBIC POWER SERIES 1007

where |X | is a fixed real number greater than 1. Let deg(0) = −∞ and |0| = 0.
Recall that |α| for power series α defines a non-Archimedian absolute value
on F((X−1)) and ⌊α⌋ is called the polynomial part of α. Note that ⌊α⌋ is
characterised as the unique polynomial f ∈ F[X ] such that |α− f | < 1.

The general theory of continued fractions for power series were expounded
by Schmidt in [13]. Here we briefly review basic facts and establish some
notations. The continued fraction expansion for power series α is defined as
the unique expression

α = a0 +
1

a1 +
1

a2 +
1

.. .

= [a0, a1, a2, . . . ],

where an ∈ F[X ] for n ≥ 0 and deg(an) > 0 for n > 0. Let P−1 = 1, Q−1 = 0
and define for n ≥ 0,

[
Pn Pn−1

Qn Qn−1

]

=

[
a0 1
1 0

] [
a1 1
1 0

]

· · ·

[
an 1
1 0

]

,

and nth complete quotient αn = [an, an+1, an+2, . . . ]. Then for n ≥ 0, we have

(1) α =
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
.

The quotient Pn/Qn is called the nth convergent of α, and is a rational ap-
proximation to α satisfying

∣
∣
∣
∣
α−

Pn

Qn

∣
∣
∣
∣
=

1

|an+1||Qn|2
.

Thus, if deg an+1 = s, the convergent Pn/Qn is said to be of accuracy s. Baum
and Sweet proved the following in [1].

Theorem 1. (a) If |Qα− P | = |X |−s|Q|−1 for s > 0 and gcd(P,Q) = 1, then
P = Pn and Q = Qn for some n ≥ 0. Hence s = deg an+1.

(b) If |Qα − P | = |Q|−1 and gcd(P,Q) = 1, then P = Pn + Pn−1 and

Q = Qn +Qn−1 for some n ≥ 0.

In the same paper, Baum and Sweet proved that two power series α and β

related by a linear fractional transformation

α =
Aβ +B

Cβ +D
, AD −BC 6= 0, A,B,C,D ∈ F[X ]

have the same behaviour regarding the boundedness of their partial quotients.
That is, α has bounded partial quotients if and only if so does β.

Our Lemma 4 in the following section is a consequence of the following result
by Lasjaunias [5].
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Theorem 2. Let α ∈ F2((X
−1)) be an irrational power series which is a root

of the equation

(2) Xy3 +Dy +X l = 0

with l ≥ 1 and D ∈ F2[X ] such that D(0) = 1. Then α has bounded partial

quotients if and only if |α| ≥ |X |−(l+1).

Lastly, we will rely on the following result by Mkaouar [12].

Theorem 3. Let P (x) =
∑

0≤i≤n Aix
i with Ai ∈ F[X ] and n ≥ 1. Suppose

that degAi < degAn−1 for all 0 ≤ i ≤ n and i 6= n − 1. Then there exists

a unique power series α with positive degree satisfying P (α) = 0. Moreover

⌊α⌋ = −⌊An−1/An⌋.

Indeed, all equations we deal with in the following sections satisfy Mkaouar’s
condition. Therefore it is guaranteed that each of these equations possess a
unique power series of positive degree as a root. Moreover the first partial
quotient is easily computed from the two coefficients of highest degrees.

3. Bounded partial quotients

Lemma 4. Let α ∈ F2((X
−1)) be the unique power series of positive degree

that is a root of the equation

(3) Cx3 +Ax2 + 1 = 0,

with l ≥ 1, C = X2l+1, A = D2, and D ∈ F2[X ] such that l ≤ degD ≤ 2l+ 1,
D(0) = 1. Then α has bounded partial quotients.

Proof. We may assume that α is irrational. Let

β =
X lα

Dα+ 1
.

Then we can check that β is a root of (2). Now by Theorem 2, β has bounded
partial quotients, and so does α. �

Theorem 5. Let α ∈ F2((X
−1)) be the unique power series of positive degree

that is a root of the equation

(4) Cx3 +Ax2 + 1 = 0

with C = X l, A = X2l +
∑2l−1

i=2 eiX
i +X + 1 (ei ∈ F2). Suppose l ≥ 2. Then

α has bounded partial quotients.

Proof. First we see that |α| = |X |l by Theorem 3. Then since α is a root of
(4), we have

(5) α =
Aα2 + 1

Cα2
=

A

C
+

1

Cα2
,

which shows that

|Cα−A| =
1

|C|2
.
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Thus the quotient A/C is a convergent to α of accuracy l. It is also clear
that all convergents prior to A/C has accuracy smaller than l. Suppose α =
[a0, a1, a2, . . . ] is the continued fraction expansion of α. Let P = Pn, Q = Qn,
a(P,Q) = an+1. Then gcd(P,Q) = 1 and

(6) |Qα− P | =
1

|a(P,Q)||Q|
.

On the other hand, by (5),

|Qα− P | =

∣
∣
∣
∣

Q(Aα2 + 1)

Cα2
− P

∣
∣
∣
∣
=

∣
∣(QA− PC)α2 +Q

∣
∣

|C|3

and hence
∣
∣(QA− PC)α2 +Q

∣
∣ =

|C|3

|a(P,Q)||Q|
.

Let us assume that P/Q is a convergent that comes after A/C. Thus we have
|C||Qα− P | < |Q||Cα−A|, and

|QA− PC| = |QA−QCα+QCα− PC| = |Q||Cα−A| =
|Q|

|C|2
.

Hence we can write
∣
∣(QA− PC)α2 +Q

∣
∣ =

|C|

|a(P,Q)||QA − PC|
.

Let D = gcd(Q,QA − PC) = gcd(Q,PC) = gcd(Q,C). Then let Q = P ′D,
QA− PC = Q′D. We now have gcd(P ′, Q′) = 1 and

(7)
∣
∣Q′α2 − P ′

∣
∣ =

|C|

|a(P,Q)||D|2|Q′|
.

Recall that α2 = [a20, a
2
1, . . . ] by the Frobenius map of F2. So all convergents

of α2 are squares of polynomials in F2[X ]. By Theorem 1, this implies that we
have

(8) |a(P,Q)| <
|C|

|D|2

unless P ′ and Q′ are both squares. This fact is our essential tool in the follow-
ing.

As D divides C = X l, there are three cases: D = X i, X l−1, X l where
0 ≤ i ≤ l − 2. For each case, we will show that |a(P,Q)| ≤ |X |l.

First case D = X i, 0 ≤ i ≤ l − 2: Note that P ′ has constant term 1. We
observe that if P ′ is a square, then

Q′ = AP ′ −X l−iP = (· · ·+X + 1)(· · ·+X2 + 1)−X l−iP = · · ·+X + 1

is not a square. As P ′ and Q′ cannot be both squares, we have

|a(P,Q)| <
|C|

|D|2

and therefore |a(P,Q)| ≤ |X |l−1.
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Second case D = X l−1: Again P ′ has constant term 1 and Q′ = AP ′−XP .
If either P ′ or Q′ is not a square, then we can conclude as in the first case. So
suppose P ′ and Q′ are both squares. Then P ′ = RX2 + 1 for some R ∈ F[X ]
and Q′ = (· · ·+X + 1)(RX2 + 1)−XP = (· · ·+X + 1)−XP . Thus Q′ must
have constant term 1. Let Q′ = V 2 and P ′ = U2. Since gcd(Q′, P ′) = 1, we
also have gcd(U, V ) = 1. From (7),

|V α− U | =
1

√

|a(P,Q)||X l−2||V |
,

by which we see that U/V is a convergent to αwith |a(U, V )|=
√

|a(P,Q)||X l−2|.
If U/V is a convergent prior to the convergent A/C, then we immediately have
|a(U, V )| ≤ |X |l−1, and

|a(P,Q)| ≤
|X |2l−2

|X l−2|
= |X |l.

Since V has constant term 1, it is not possible that U/V is equal to A/C. So we
can assume that U/V is a convergent that comes after A/C. This means that
we can apply the same argument that we applied to (6) now to the convergent
U/V of α. Let U ′ = V and V ′ = AV + CU . Since V has constant term 1, we
have gcd(U ′, V ′) = 1. Thus we get

∣
∣V ′α2 − U ′

∣
∣ =

|C|

|a(U, V )||V ′|
.

If U ′ is a square, we can show that V ′ is not a square by a similar argument
as in the first case. Hence U ′/V ′ cannot be a convergent of α2, which implies
|a(U, V )| < |C|. So

|a(P,Q)| ≤
|X |2l−2

|X l−2|
= |X |l.

We now come to the third case D = X l. We will show that assuming
|a(P,Q)| > |X |l leads to a contradiction. So let us assume that P/Q is a
convergent to α with a(P,Q) of smallest degree greater than l. Then P ′ and
Q′ must be squares since otherwise we have (8). Let Q′ = V 2, P ′ = U2. We
have gcd(U, V ) = 1 since gcd(P ′, Q′) = 1. Now from (7),

|V α− U | =
1

√

|a(P,Q)||X l||V |
.

Thus U/V is a convergent to α such that |a(U, V )| =
√

|a(P,Q)||X l|. Then
since deg a(P,Q) > l, we have

|a(U, V )| >
√

|X |l|X l| = |X |l,

that is deg a(U, V ) > l, and moreover

deg a(U, V ) =
deg a(P,Q) + l

2
< deg a(P,Q).
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This contradicts our assumption that the convergent P/Q has a(P,Q) of small-
est degree greater than l. �

Theorem 6. Let α ∈ F2((X
−1)) be the unique power series of positive degree

that is a root of the equation

(9) x3 + (X l +B)x2 + x+B = 0,

where l ≥ 3 and B ∈ F2[X ] is such that deg(B) < l, B(0) = 0, and B
X (0) = 1.

Then α has bounded partial quotients.

Proof. Let β be the power series defined by

α =
(X l +B)β + 1

β
.

Then we see that β is the unique power series of positive degree that is a root
of

X ly3 + (X2l +B2 + 1)y2 + 1 = 0.

Now suppose l is odd. Let l = 2l′ + 1. Then the previous equation can be
written as

X2l′+1y3 +D2y2 + 1 = 0

with deg(D) = 2l′ + 1, D(0) = 1. So by Theorem 4, β has bounded partial
quotients, and so does α.

Suppose l is even. Let l = 2l′. Let Y = X2. Then

Y l′y3 + (Y 2l′ + · · ·+ Y + 1)y2 + 1 = 0

which has a unique power series root γ(Y ) of positive degree with bounded
partial quotients by Theorem 5. Then clearly β = γ(X2) has also bounded
partial quotients, and so does α. �

4. Unbounded partial quotients

Observe that in Theorem 5, we deliberately excluded the case when l = 1.
The next result shows that this provision was necessary.

Theorem 7. Let α be the unique power series over F2 of positive degree that is

a root of (4) with l = 1, that is C = X, A = X2 +X + 1. Then the continued

fraction expansion of α is [a0, a1, a2, . . . ] where a0 = X + 1, and for all k ≥ 1,

a2k−1 = X2k−1, a2k = X.

In particular, the partial quotients are unbounded.

Proof. By Theorem 3 and direct calculations, we immediately see that a0 =
X + 1 and a1 = X . Thus by (1), we have

(10) α =
(X2 +X + 1)α2 +X + 1

Xα2 + 1
.
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On the other hand, by the Frobenius map,

(11) α2 =

(

X + 1 +
1

α1

)2

= X2 + 1 +
1

α2
1

and also by the equation (4) of which α is a root,

(12) α2 =
1

Xα+X2 +X + 1
.

Combining (10), (11) and (12), we get

α2 = X +
1

Xα2
1

,

which implies a2 = X and α3 = Xα2
1. Since α1 = X + 1

α2

, we have

α3 = X

(

X2 +
1

α2
2

)

= X3 +
X

α2
2

,

which implies a3 = X3 and α4 = X−1α2
2. We now claim that for all k ≥ 1,

(13) a2k = X, a2k+1 = X2k+1
−1, α2k+1 = Xα2

2k−1, α2k+2 = X−1α2
2k.

Clearly (13) is true for k = 1. So we assume (13) for k = l ≥ 1. Then

α2l+2 = X−1

(

X2 +
1

α2
2l+1

)

= X +
1

Xα2
2l+1

,

which implies a2l+2 = X and α2l+3 = Xα2
2l+1. Then

α2l+3 = X

(

(X2l+1
−1)2 +

1

α2
2l+2

)

= X2l+2
−1 +

X

α2
2l+2

,

which implies a2l+3 = X2l+2
−1 and α2l+4 = X−1α2

2l+2. Thus (13) is also true
for k = l+ 1. By induction, we see that (13) holds for all k ≥ 1. �

We now consider the corner case excluded in Theorem 6.

Corollary 8. Let α be the unique power series over F2 of positive degree that

is a root of (9) with l = 2, namely

x3 + (X2 +X)x2 + x+X = 0.

Then the partial quotients of α are unbounded.

Proof. Let β be the power series defined by α = X2 +X + 1
β . Then β is the

unique power series of positive degree that is a root of

X2y3 + (X4 +X2 + 1)y2 + 1 = 0.

So β = γ(X2) if γ(Y ) is the unique power series root of positive degree of the
equation

Y y3 + (Y 2 + Y + 1)y2 + 1 = 0.

By Theorem 7, we know that γ(Y ) has unbounded partial quotients. Hence α

has also unbounded partial quotients. �
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5. Examples

In [10], an algorithm for computing the continue fraction expansion of a
linear fractional transformation of a power series of known continued fraction
expansion was presented. We now briefly recall how the algorithm can be used
to determine the continued fraction expansions of hyperquadratic power series.

If a power series α = [a0, a1, a2, . . . ] over F2 satisfies

α =
Aα2 +B

Cα2 +D
, A,B,C,D ∈ F2[X ],

then we express the above relation by formally writing
[
a0 1
1 0

] [
a1 1
1 0

] [
a2 1
1 0

]

· · · =

[
A B

C D

]
∗
[
a20 1
1 0

] [
a21 1
1 0

] [
a22 1
1 0

]

· · · .

Applied to the right-side of the above equation with the known a0, the algo-
rithm repeatedly transforms it by

(14)

[
A B

C D

] [
a2n 1
1 0

]

=

[
am 1
1 0

] [
am+1 1
1 0

]

. . .

[
am+r 1
1 0

] [
A′ B′

C′ D′

]

revealing progressively all partial quotients a1, a2, . . . .
We applied the algorithm to the unique power series root α of positive degree

of the equation

(15) x3 + (X3 +X)x2 + x+X = 0 or x =
(X3 +X)x2 +X

x2 + 1
.

Note that this is the simplest case of (9) when l = 3 and B = X . The finite-
state machine in Figure 1 summarizes the behaviour of the algorithm. In the
figure, we express (14) as

[
A B

C D

]
an|am,am+1,...,am+r

−−−−−−−−−−−−−−→

[
A′ B′

C′ D′

]

and also note that initially
[
A B

C D

]
∗

=

[
X3 +X X

1 1

]
∗

, a0 = X3 +X

by (15) and Theorem 3. Now we can read the continued fraction expansion of
α from the finite-state machine as follows

α = [X3 +X,X3, X ;X,X,X3, X ;X ;X3;X ;X3 +X,X3;X3 +X ;X ; . . . ].

Our second example is the unique power series root β of positive degree of
the equation (9) when l = 4 and B = X , that is,

x3 + (X4 +X)x2 + x+X = 0 or x =
(X4 +X)x2 +X

x2 + 1
.

The behaviour of the algorithm applied to β is shown in Figure 2. It is inter-
esting that the continued fraction expansion of β are much more complicated
than that of α, though they are roots of very similar equations.
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[
X3 +X X

1 1

]
∗

[
X2 + 1 1

X X

] [
X3 0
1 1

]

X |X3 X3 +X |X3 +X,X3, X

X3|X3 +X,X3

X |X

X3 +X |X,X,X3

X3|X,X,X3, X

X3 +X |X3, X3, X

X |X3 +X

X3|X3, X3

Figure 1. Finite-state machine generating partial quotients
of α

[
X4 +X X

1 1

]
∗

[
X4 0

X2 + 1 1

]

[
X4 +X2 1

X2 1

]

[
X6 +X2 + 1 X2

X2 0

]

[
X4 0
X2 1

]

[
X6 + 1 X2

X2 0

]

[
X4 +X2 + 1 1

X2 + 1 1

]

X4 +X |X4 +X,X4

X4|X2 + 1, X2 + 1, X4

X2 + 1|X2 + 1, X2

X2|X2 + 1, X2

X2 + 1|X2 + 1

X2|X2 + 1

X4 + 1|X4 + 1, X2, X4

X2|X4 + 1, X2 + 1

X2 + 1|X4 + 1, X2 + 1

X4|X4 + 1, X2, X4

X2 + 1|X2

X2|X2
X4|X4, X2, X4

X4 + 1|X4, X2, X4

X2|X4, X2 + 1

X2 + 1|X4, X2 + 1

X4 + 1|X2, X2 + 1, X4

X4|X2, X2 + 1, X4

Figure 2. Finite-state machine generating partial quotients
of β

Finally we appreciate the anonymous reviewer’s suggestions that helped im-
prove the exposition.
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