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STABILITY OF MAP/PH/c/K QUEUE WITH CUSTOMER

RETRIALS AND SERVER VACATIONS

Yang Woo Shin

Abstract. We consider the MAP/PH/c/K queue in which blocked cus-
tomers retry to get service and servers may take vacations. The time
interval between retrials and vacation times are of phase type (PH) dis-
tributions. Using the method of mean drift, a sufficient condition of
ergodicity is provided. A condition for the system to be unstable is also
given by the stochastic comparison method.

1. Introduction

Consider the queueing system that consists of a virtual space, called orbit
of infinite size and a service facility with multiple servers and a waiting space
of finite capacity. If an arriving customer finds an available space in service
facility, the customer enters the service facility. Otherwise, the customer joins
orbit and repeats its request after random amount of time, called retrial time
until the customer gets into the service facility. The servers are allowed to
take a vacation after service. The queueing system with retrials is called retrial
queue and the system in which the servers may take vacation is called vacation
queue.

Retrial queues and vacation queues have been studied separately for last
several decades. The readers can refer the monographs [2, 8] for retrial queues
and the monographs [21, 22] for vacation queues. The literature for the retrial
queues with vacations is rapidly increasing. Many papers have been devoted
to performance analysis of the system in steady state e.g. [1, 6, 11, 14] for the
system with constant retrial rate in which only one customer in orbit can retry
and see [5] for linear retrial policy.

The first step to be showed in the steady state performance analysis is the
stability condition of the system under which the Markov process describing
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the system behavior is ergodic, that is, it is irreducible and positive recurrent.
This paper concerns the stability of the multi-server finite buffer queueing sys-
tem with retrials and vacations. Many papers provide stability conditions of
the multi-server retrial queues with the help of the criteria in [23] based on the
mean drifts e.g. see [7, 8, 10]. He et al. [10] derive a sufficient condition for
the BMAP/PH/c/K retrial queue with PH-retrial time to be positive recur-
rent using mean drifts and a necessary condition is given by the sample path
approach. Breuer et al. [4] present a stability condition for BMAP/PH/c re-
trial queue by using the matrix generating function of embedded Markov chain
at the epochs of transitions. Morozov [17] provides a stability condition for
GI/G/c retrial queue with exponential retrial time by applying the renewal
technique. Kim [12] derives a necessary and sufficient condition for a retrial
queueing network with different classes of customers and several servers by us-
ing fluid limit technique. See Kim and Kim [13] for more details about stability
of retrial queues.

In this paper, a sufficient condition of ergodicity for the MAP/PH/c/K

queues with retrials and vacations in which the retrial times and vacation times
are of phase type (PH) distributions is given. The model considered in this
paper is very general and contains many models arising in literature of retrial
queues and vacation queues as special cases. The mean drift method is used
for sufficient condition and stochastic comparison approach is used to show
the condition under which the system is unstable. The model is described
in Section 2. The stability condition for the system without specifying the
vacation policy is given in Section 3. Section 4 is devoted to the stability of the
systems with specific vacation policies. Nonstability is treated in Section 5.

2. The model

Consider the MAP/PH/c/K queue which consists of an orbit with infinite
capacity and a service facility with c identical servers in parallel and K − c

waiting positions. Customers arrive from outside according to a Markovian
arrival process (MAP) with representation (D0, D1). The matrices D0 and
D1 are square matrices of size l with negative diagonal elements [D0]ii < 0,
nonnegative off diagonal elements [D0]ij ≥ 0, i 6= j and D1 ≥ 0 satisfying (D0+
D1)eee = 0, where eee is the column vector of appropriate size whose components
are all one. For detailed description of MAP, see [15, 16]. Let πππa be the
stationary distribution of D = D0 + D1 and denote the arrival rate by λ =
πππaD1eee. If the number of customers in service facility is less than K upon
arrival, the arriving customer enters the service facility and leaves the system
after service. On the other hand, if an arriving customer finds that there
are K customers in service facility, the customer joins orbit and repeats its
request after random amount of time until the customer gets into the service
facility. The customers in orbit retry independently and the retrial times of
each customer are independent. We assume that the retrial time distribution
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of a customer in orbit is of phase type PH(θθθ,UUU), where θθθ = (θ1, . . . , θg) with
θθθeee = 1 and UUU = (uij) is a nonsingular g × g matrix with uii = −ui < 0,
1 ≤ i ≤ g. Let uuu = (u1, . . . , ug), γγγ = −UUUeee = (γ1, . . . , γg)

T , where xxxT is the
transpose of the vector xxx. It can be seen that πππr = 1

mr
θθθ(−U)−1 is a stationary

distribution of U∗ = U + γγγθθθ, where mr = θθθ(−UUU)−1eee is the mean retrial time.
For detailed description of the PH-distribution and PH-renewal process, see
[18, Chapter 2]. The service time distribution of a customer is of phase type
PH(βββ,SSS), where βββ = (β1, . . . , βm) with βββeee = 1 and SSS = (sij) is a nonsingular
m×m matrix with sii = −si < 0, 1 ≤ i ≤ m and sss = (s1, . . . , sm). Let πππs be

the stationary distribution of S∗ = SSS + SSS
0
βββ, where SSS0 = −SSSeee and denote the

service rate by µ = πππsSSS
0. Here, we assume that the servers may take vacations.

The specific vacation rules will be described in Section 4.
For later use, we introduce some notation for vectors and matrices. Define

|xxx| =
∑n

i=1 xi and xxx · yyy =
∑n

i=1 xiyi and xxx ≥ 0 means that xi ≥ 0, 1 ≤ i ≤ n

for vectors xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) and let Z+ = {0, 1, 2, . . .} and
denote by In the identity matrix of size n. The Kronecker productA ⊗ B and
Kronecker sum A⊕B of two square matrices A = (aij) of size m and B = (bij)
of size n are defined by

A⊗B = (aijB), A⊕B = A⊗ In + Im ⊗B

and let A⊗k = A⊗A⊗(k−1), A⊕k = A⊕A⊕(k−1) with (A⊗0)⊗B = B⊗(A⊗0) =
B. For more details for Kronecker product and Kronecker sum, see [9].

3. Preliminaries

Let Xi(t) be the number of customers in orbit whose retrial phase is of i,
1 ≤ i ≤ g and Y0(t) be the number of customers in service facility at time t. Let
ZZZ(t) be the state of service facility that includes arrival state, the number of
customers in service facility and the the phase of service times of busy servers,
the server state (in vacation or in service facility) at time t. The state space of
ZZZ(t) may depend not only on the number of customers in the service facility but
also the service disciplines such as vacation rule, the distribution of vacation
time. Then ΨΨΨ = {(XXX(t), Y0(t),ZZZ(t)), t ≥ 0} with XXX(t) = (X1(t), . . . , Xg(t))
is a continuous time Markov chain on the state space S = ∪nnn∈Z

g

+

S(nnn), where

S(nnn) = ∪K
k=0Sk(nnn) with Sk(nnn) = {(nnn, k, j) : 1 ≤ j ≤ zk}, 0 ≤ k ≤ K. Denote

the number of elements of Sk(nnn) by |Sk(nnn)| = zk and let M =
∑K

k=0 zk. The
matrix Q(nnn,nnn′) corresponding to the transition rates between levels S(nnn) and
S(nnn′) is given by

Q(nnn,nnn′) =







θiQ0, nnn′ = nnn+ eeei, 1 ≤ i ≤ g,

Q1 − (nnn · uuu)IM + (
∑g

i=1 niγiθi) I∗, nnn′ = nnn,

niuijIM + niγiθjI∗, nnn′ = nnn− eeei + eeej , i 6= j,

niγiQ2, nnn′ = nnn− eeei, 1 ≤ i ≤ g,

0, otherwise,
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where eeei is the vector whose ith component is 1 and others are all zero and

I∗ =

(
O

IzK

)

.

The M ×M matrices Q0 and Q2 are for an arrival to orbit and a departure
from orbit, respectively and Qi, i = 0, 1, 2 are of the form

Q1 =











A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

. . .
. . .

. . .

A
(K−1)
2 A

(K−1)
1 A

(K−1)
0

A
(K)
2 A

(K)
1











,

Q0 =








O
. . .

O

A
(K)
0







, Q2 =








O H(0)

. . .
. . .

O H(K−1)

O







,

where H(k)eee = eee, k = 0, 1, . . . ,K−1 and the block matrices A
(k)
i corresponding

to the transitions in service facility when there are k customers in service facility
are determined by the specific vacation and (Q0 +Q1)eee = 0.

Proposition 3.1. Let

A(t) = A
(K)
0 + tA

(K)
1 + t2A

(K)
2 H(K−1), 0 ≤ t ≤ 1.

If there exist a constant 0 < t0 < 1 and a positive vector xxxK such that

A(t0)xxxK < 0, then the Markov chain ΨΨΨ is positive recurrent.

Proof. See Appendix. �

Theorem 3.2. Assume thatΨΨΨ is irreducible. Let R be the minimal nonnegative

solution of the equation

A
(K)
0 +RA

(K)
1 +R2A

(K)
2 H(K−1) = 0.

Let πππ be the stationary distribution of A(1) and ξ = sp(R) be the spectral radius

of R. If πππA
(K)
0 eee < πππA

(K)
2 H(K−1)eee or equivalently ξ < 1, then ΨΨΨ is ergodic.

Proof. It follows from [18, Theorem 3.1.1] that ξ = sp(R) < 1 if and only if

πππA
(K)
0 eee < πππ(A

(K)
2 H(K−1))eee. Let τ be the maximal elements of the diagonal

entries of the matrix −A
(K)
1 and

B0 =
1

τ
A

(K)
0 , B1 =

1

τ
A

(K)
1 + I, B2 =

1

τ
A

(K)
2 H(K−1),

where I is the identity matrix of size zK . Applying the arguments in the proof
of Lemma 1.3.4 in [18] to the matrix B(t) = B0 + tB1 + t2B2, it can be seen
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that if ξ < 1, then χ(t) = sp(B(t)) < t, ξ < t < 1. Thus for each t with
ξ < t < 1, there exist a positive vector yyy(t) such that

(
1

τ
A(t) + tI

)

yyy(t) = B(t)yyy(t) = χ(t)yyy(t),

and hence

A(t)yyy(t) = −τ(t− χ(t))yyy(t) < 0, ξ < t < 1.

The theorem is immediate from Proposition 3.1. �

4. Sufficient condition

Now we consider the MAP/PH/c/K retrial queue with server vacations.
Vacation policies are determined by vacation startup rules and vacation ter-
mination rules. Readers can refer the monograph [22] for various vacation
policies in multi-server system. Here, we consider the two vacation startup
rules (a, b)-vacation policy introduced by [24] and asynchronous vacation. Un-
der the (a, b)-vacation rule, if any a (1 ≤ a < c) or more servers are idle at
a service completion, that is, the number of customers at the service facility
is less than or equal to a∗ = c − a upon a service completion, then b (b ≤ a)
servers among idle servers take a vacation at the same time and the remaining
b∗ = c− b servers are available. The maximum number of servers on vacation
is b even though there are idle servers more than 2b. The servers in vacation
return at the same time when the vacation period ends. The vacation time
distribution is assumed to be of phase type PH(δδδ, V ), where δδδ = (δ1, . . . , δw)
with δδδeee = 1 and VVV = (vij) is a nonsingular w × w matrix with vii = −vi < 0,

1 ≤ i ≤ w. Let VVV 0 = −VVV eee = (v01 , . . . , v
0
w)

T and πππv be the stationary distribu-

tion of VVV ∗ = VVV + VVV 0δδδ, ν∗ = πππvVVV
0 the vacation rate.

Under the asynchronous vacation policy, a server in service facility starts a
vacation independently if the server finds no waiting customer in the system
at his or her service completion instant. We consider two kinds of vacation
termination rules, single vacation policy and multiple vacation policy. Under
the single vacation policy, the servers take only one vacation and after the
vacation the servers either serve the waiting customer in service facility if any
or stay idle. A multiple vacation policy requires the servers to keep taking
vacation until they find the system that is not in the vacation startup condition
at the end of each vacation.

1. MAP/PH/c/K retrial queue with vacation under (a, b)-vacation start up

rule and single vacation policy. Let Ja(t) be the phase of arrival process and
the server state Js(t) at time t is defined by

Js(t) =

{
0, c servers are available
j, the phase of vacation time is of j, 1 ≤ j ≤ w.

Let Yi(t) be the phase of service time of the ith working server at time t

and XXX(t) = (X1(t), . . . , Xg(t)). Note that the stability condition given in
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Proposition 3.1 depends only on the matrices A
(K)
0 , A

(K)
1 , A

(K)
2 and H(K−1).

So, we consider these matrices corresponding to the Markov chain ΨΨΨ for two
cases (i) K > c or a > 1 and (ii) K = c, a = b = 1 separately.

Case (i): K > c or a > 1. Let b0(t) = min(Y0(t), c) be the number of busy
servers when no servers are in vacation and b1(t) = min(Y0(t), b

∗) the number
of busy servers when b servers are in vacation and YYY (t) = (Y1(t), . . . , Ybj(t)(t)),
where j = 0 for J(t) = 0 and j = 1 for J(t) > 0. Let

JI(t) =

{
0, all the c servers are busy,
i, the server i is idle and is not in vacation, 1 ≤ i ≤ c.

Then ΨΨΨ = {(XXX(t), Y0(t), Z(t)), t ≥ 0} with Z(t) = (JI(t), Js(t), Ja(t),YYY (t)) is
a continuous time Markov chain. It can be easily seen that the block matrices

A
(K)
i are given as follows:

A
(K)
0 =

(
AV

K0 0
0 AK0

)

, A
(K)
1 =

(

AV
K1 ÃV

K1

0 AK1

)

,

A
(K)
2 =

(
AV

K2 0
0 AK2

)

, H(K−1) =

(
HV

K−1 0
0 HK−1

)

,

where AV
Ki, i = 0, 1, 2 are corresponding to the transitions rates in server

vacations and AKi, i = 0, 1, 2 are to the transitions rates when no servers are in
vacations and ÃKi are to the transitions rates when server states are changed

from no vacations to vacation. The block matrices of A
(K)
i and H(K−1) are

given as follows: for K > c,

AV
K0 = Iw ⊗D1 ⊗ I⊗b∗

m , AK0 = D1 ⊗ I⊗c
m ,

AV
K1 = V ⊕D0 ⊕ S⊕b∗ , AK1 = D0 ⊕SSS

⊕c
,

ÃV
K1 = VVV

0 ⊗ Il ⊗ I⊗b∗

m ⊗ βββ
⊗(c−b∗)

,

AV
K2 = Iw ⊗ Il ⊗ (SSS0

βββ)⊕b∗ , AK2 = Il ⊗ (SSS0
βββ)⊕c,

HV
K−1 = Iw ⊗ Il ⊗ I⊗b∗

m , HK−1 = Il ⊗ I⊗c
m ,

and for K = c and a > 1,

Ac2 = (Iw⊗Il⊗SSS
0⊗I⊗c−1

m , Iw⊗Il⊗Im⊗SSS0⊗I⊗c−2
m , . . . , Iw⊗Il⊗I

⊗c−1
m ⊗SSS0)

and

Hc−1 =








Il ⊗ βββ ⊗ I⊗c−1
m

Il ⊗ Im ⊗ βββ ⊗ I⊗c−2
m

...
Il ⊗ I⊗c−1

m ⊗ βββ








and the remaining block matrices are the same as those for the cases of K > c.
Note that

A
(c)
2 H(c−1) =

(
Iw ⊗ Il ⊗ (SSS0

βββ)⊕b∗ 0

0 Il ⊗ (SSS0βββ)⊕c

)

which is the same as A
(K)
2 H(K−1) for K > c.
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Case (ii): K = c and a = b = 1. Denote by JV (t) the server in vacation at
time t and let YYY ∗(t) = (Y1(t), . . . , Yi−1(t), Yi+1(t), . . . , Yc(t)) when JV (t) = i

and YYY
∗(t) = (Y1(t), . . . , Yc(t)) when there are no servers in vacation. Then

ΨΨΨ∗ = {(XXX(t), Y0(t), Z
∗(t)), t ≥ 0} with Z(t) = (JV (t), Js(t), Ja(t),YYY

∗(t)) is a
continuous time Markov chain. It can be easily seen that the block matrices

A
(c)
i are of the form as follows:

A
(c)
0 =

(
AV

c0 0
0 Ac0

)

, A
(c)
1 =

(

AV
c1 ÃV

c1

0 Ac1

)

,

A
(c)
2 =

(
AV

c2 0

Ãc2 0

)

, H(c−1) =

(
HV

c−1 0
0 Hc−1

)

.

The block matrix components for A
(c)
i are given as follows

AV
c0 = Ic ⊗ Iw ⊗D1 ⊗ I⊗c−1

m , Ac0 = D1 ⊗ I⊗c
m ,

AV
c1 = Ic ⊗ (V ⊕D0 ⊕ S⊕c−1), Ac1 = D0 ⊕ S⊕c,

AV
c2 = Ic ⊗ Iw ⊗ Il ⊗ (SSS0

βββ)⊕c−1

and

ÃV
c1 =








V0 ⊗ Il ⊗ βββ ⊗ I⊗c−1
m

V0 ⊗ Il ⊗ Im ⊗ βββ ⊗ I⊗c−2
m

...
V0 ⊗ Il ⊗ I⊗c−1

m ⊗ βββ







,

Ãc2 = (δδδ ⊗ Il ⊗ SSS
0 ⊗ I⊗c−1

m , δδδ ⊗ Il ⊗ Im ⊗ SSS
0 ⊗ I⊗c−2

m , . . . , δδδ ⊗ I⊗c−1
m ⊗SSS

0).

Note that HV
c−1 = Ic ⊗ Iw ⊗ Il ⊗ I⊗c−1

m and

A
(c)
2 H(c−1) =

(
AV

c2 0

Ãc2 0

)

.

Proposition 4.1. A sufficient condition for MAP/PH/c/K retrial queue with

vacation under (a, b)-vacation start up rule and single vacation policy to be

positive recurrent is

ρ =
λ

cµ
< 1 for K > c or a > 1,(1)

ρ =
λ

cµ
<

(c− 1)µ+ ν∗

cµ+ ν∗
for K = c and a = b = 1.(2)

Proof. We consider the two cases separately.
Case (i): K > c or a > 1. It can be easily seen that

A(t) = A
(K)
0 + tA

(K)
1 + t2A

(K)
2 H(K−1) =

(
A00(t) A01(t)

0 A11(t)

)

with

A00(t) = Iw ⊗D ⊗ I⊗b∗

m + tVVV ⊕D0 ⊕SSS
⊕b∗ + t2Iw ⊗ Il ⊗ (SSS0

βββ)⊕b∗ ,

A01(t) = tVVV
0 ⊗ Il ⊗ I⊗b∗

m ⊗ βββ
⊕(c−b∗)

,
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A11(t) = D1 ⊗ I⊗c
m + tD0 ⊕ SSS

⊕c + t2Il ⊗ (SSS0
βββ)⊕c.

Let R be the minimal nonnegative solution of the equation

A
(K)
0 +RA

(K)
1 +R2A

(K)
2 H(K−1) = 0.

It can be seen from the formula of A(1) that R is of the form

R =

(
R00 R01

0 R11

)

.

It is sufficient to show that sp(R) = max(sp(R00), sp(R11)) < 1.
Note that R00 is the minimal nonnegative solution of the equation

Iw ⊗D ⊗ I⊗b∗

m +R00(VVV ⊕D0 ⊕SSS⊕b∗) +R2
00(Iw ⊗ Il ⊗ (SSS0βββ)⊕b∗) = 0.

Since A00(1)eee ≤ 0 and A00(1)eee 6= 0, the spectral radius ξ0 = sp(R00) of R00 is
ξ0 < 1, see [18, Corollary 1.3.1].

Note that R11 is the minimal nonnegative solution of the equation

D1 ⊗ I⊗c
m +R11(D0 ⊕SSS⊕c) +R2

11(Il ⊗ (SSS0βββ)⊕c) = 0

and πππ = πππa ⊗ (πππs)
⊗c is the stationary distribution of A11(1). It follows from

[18, Theorem 3.1.1] that ξ1 = sp(R11) < 1 if and only if λ = πππA
(K)
0 eee <

πππ(A
(K)
2 H(K−1))eee = cµ. Thus if ρ < 1, then sp(R) = max(ξ0, ξ1) < 1, and hence

it follows from Theorem 3.2 that the condition (1) is a sufficient condition for
ΨΨΨ to be positive recurrent.

Case (2): K = c and a = b = 1. Write

A(t) = A
(c)
0 + tA

(c)
1 + t2A

(c)
2 H(c−1) =

(
A∗

00(t) A∗

01(t)
A∗

10(t) A∗

11(t)

)

.

The block matrices A∗

ij(t), i, j = 0, 1 are given as follows:

A∗

00(t) = AV
c0 + tAV

c1 + t2AV
c2, A∗

01(t) = tÃV
c1,

A∗

10(t) = t2Ãc2, A∗

11(t) = Ac0 + tAc1.

Let πππ∗ = 1
cµ+ν∗ (πππ

∗

1,πππ
∗

2), where

πππ∗

1 = µeee⊗ πππv ⊗ πππa ⊗ πππ⊗c−1
s ,

πππ∗

2 = ν∗πππa ⊗ πππ⊗c
s

with eee is c-dimensional row vector whose components are all 1. It can be easily
seen that πππ∗ is the stationary distribution of

A(1) =

(
Ic ⊗ (V ⊕D ⊕ S∗⊕c−1) ÃV

c1

Ãc2 D ⊕ S⊕c

)

and

πππ∗A
(c)
0 eee = λ,

πππ∗A
(c)
2 H(c−1)eee =

cµ((c− 1)µ+ ν∗)

cµ+ ν∗
.
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Thus (2) is a sufficient condition for the system to be positive recurrent. �

Remarks. 1. The condition (1) in Proposition 4.1 does not depend on the
vacation time and the value of b. If b = 0, then the system becomes retrial
queue without vacations. The stability condition (1) is consistent with that of
MAP/PH/c/K retrial queue in [10]. Breuer et al. [4] indicated that the proof
of [10] is not complete for K = c. However, Proposition 4.1 shows that the
result in [10] is correct.

2. Note that the condition (2) depends on the mean vacation time. This
result can be expected from the single server system with no waiting space and
a = b = 1 that arriving or retrial customers cannot enter the service facility
unless there is an available server. Considering the vacation time as an extra
service time, the system becomes a retrial queue with super service time (actual

service time plus vacation time) whose stability condition is λ <
(

1
µ + 1

ν∗

)
−1

=

µν∗

ν∗+µ , see [8].

2. MAP/PH/c/K retrial queue with vacation under (a, b)-vacation start

up rule and multiple vacation rule. The multiple vacation policy with (a, b)-
vacation setup rule requires the servers to keep taking vacation until they find
at least a∗ + 1 customers waiting in service facility. In this case, if K > c or

a > 1, then we can see that A
(K)
0 , A

(K)
1 and A

(K)
2 H(K−1) are the same as those

of the case of single vacation and the condition (1) is a sufficient condition for
the system to be positive recurrent. For K = c and a = b = 1, the event

{Y0(t) = c − 1, J(t) = 0} does not occur and A
(c)
2 and H(c−1) are given as

follows:

A
(c)
2 =

(
AV

c2

ÃV
c2

)

, H(c−1) =
(
HV

c−1 0
)

and the remaining matrices A
(c)
0 and A

(c)
1 are the same as those of single vaca-

tion system. Since

A
(c)
2 H(c−1) =

(
AV

c2 0

ÃV
c2 0

)

,

the condition (2) is a sufficient condition for the system with K = c and
a = b = 1 to be positive recurrent. Summarizing the results above, we have
the following.

Proposition 4.2. The conditions (1) for K > c or a > 1, and (2) for K = c

and a = b = 1 are sufficient condition for MAP/PH/c/K retrial queue with

vacation under (a, b)-vacation start up rule and multiple vacation policy to be

positive recurrent.

3. MAP/PH/c/K retrial queue with vacation under asynchronous and

single vacation rule. As in the previous model with (a, b)-vacation rule, de-
note the number of customers in orbit, service facility and arrival phase by
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XXX(t) = (X1(t), . . . , Xg(t)), Y0(t) and Ja(t), respectively. Let b
∗(t) be the num-

ber of available servers and JV (t) be the servers in vacation at time t. Let Yi(t)
be the service phase of the server i in service and Vj(t) be the phase of vaca-
tion time of the server j in vacation and denote VVV (t) = (Vj(t), j ∈ JV (t))
and YYY (t) = (Yi(t), i /∈ JV (t)), where j ∈ JV (t) = (j1, j2, . . . , jm) means
that the server j = jl for some 1 ≤ l ≤ m is in vacation at time t. Then
ΨΨΨ = {(XXX(t), Y0(t),ZZZ(t)), t ≥ 0} with ZZZ(t) = (b∗(t), JV (t),VVV (t), Ja(t),YYY (t) is a

continuous time Markov chain. In this case, the formulae for the matrices A
(K)
i

of Qj , j = 0, 1, 2 are as follows:

A
(K)
0 =









A
(K)
0,00

A
(K)
0,11

. . .

A
(K)
0,cc









,

A
(K)
1 =









A
(K)
1,00 A

(K)
1,01

. . .
. . .

A
(K)
1,c−1,c−1 A

(K)
1,c−1,c

A
(K)
1,cc









,

A
(K)
2 =











0

0 A
(K)
2,11

. . .
. . .

0 A
(K)
1,c−1,c−1

A
(K)
2,c,c−1 A

(K)
2,cc











,

where A
(K)
i,jj′ is corresponding to the transition rates when the number of cus-

tomers in service facility is K and the number of available servers in service

facility is j. The matrices A
(K)
i,jj′ for 0 ≤ j ≤ c − 2 have complex structure.

However, we need the exact formulae only for A
(K)
i,jj′ , j, j

′ = c− 1, c for ergodic
condition and they are given as follows:

A
(K)
0,jj =

{
Ic ⊗ (Iw ⊗D1 ⊗ I⊗c−1

m ), j = c− 1
D1 ⊗ I⊗c

m , j = c,

A
(K)
1,jj =

{
Ic ⊗ (VVV ⊕D0 ⊕ SSS⊕c−1), j = c− 1

D0 ⊕SSS⊕c, j = c,

A
(K)
1,c−1,c =








VVV
0 ⊗ Il ⊗ βββ ⊗ I⊗c−1

m

VVV 0 ⊗ Il ⊗ Im ⊗ βββ ⊗ I⊗c−2
m

...

VVV 0 ⊗ Il ⊗ I⊗c−1
m ⊗ βββ







,
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A
(K)
2,c−1,c−1 = Ic ⊗ Iw ⊗ Il ⊗ (SSS0βββ)⊕c−1.

The matrix A
(K)
2,cj is given by A

(K)
2,c,c−1 = 0, K > c and for K = c,

A
(c)
2,c,c−1 = (δδδ⊗ Il ⊗SSS

0 ⊗ I⊗c−1
m , δδδ⊗ Il ⊗ Im ⊗SSS0 ⊗ I⊗c−2

m , . . . , δδδ⊗ I⊗c−1
m ⊗SSS0),

A
(K)
2,cc =

{
Il ⊗ (SSS0βββ)⊕c, K > c

0, K = c.

The matrix H(K−1) is given by

H(K−1) =







H
(K−1)
0

. . .

H
(K−1)
c






,

where H
(K−1)
k = I, k = 0, 1, . . . , c− 1 are the identity matrices of appropriate

size and H
(K−1)
c = Ic ⊗ Iw ⊗ Il ⊗ I⊗c

m for K > c and the matrix H
(c−1)
c for

K = c is not necessary for ergodic condition.
We consider two cases (i) K > c and (ii) K = c separately.

Case (i): K > c. It can be easily seen that A(t) = A
(K)
0 + tA

(K)
1 +

t2A
(K)
2 H(K−1) is of the form

A(t) =

(
A00(t) A01(t)

0 A11(t)

)

,

where

A01(t) =

(
0

tA
(K)
1,c−1,c

)

,

A11(t) = D1 ⊗ Imc + tD0 ⊕SSS
⊕c + t2Il ⊗ (SSS0

βββ)⊕c.

Since A00(1)eee ≤ 0, A00(1)eee 6= 0 and A11(t) is the same as that of the case of
Proposition 4.1, ρ < 1 is a sufficient condition for this system with K > c to
be positive recurrent.

Case (ii): K = c. In this case, write A(t) by

A(t) =

(
A∗

00(t) A∗

01(t)
0 A∗

11(t)

)

,

where

A∗

01(t) =

(
0 0

tA
(K)
1,c−2,c−1 0

)

, A∗

11(t) =

(

B0(t) tA
(c)
1,c−1,c

t2A
(c)
2,c,c−1 B1(t)

)

and

B0(t) = A
(c)
0,c−1,c−1 + tA

(c)
1,c−1,c−1 + t2A

(c)
2,c−1,c−1

= Ic ⊗ (Iw ⊗D1 ⊗ I⊗c−1
m ) + tIc ⊗ (VVV ⊕D0 ⊕SSS

⊕c−1) + t2A
(c)
2,c−1,c−1,

B1(t) = D1 ⊗ I⊗c
m + tD0 ⊕ SSS

⊕c
.
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Since A∗

00(1)eee ≤ 0, A∗

00(1)eee 6= 0 and A∗

11(t) is the same as A(t) of the case
K = c, a = b = 1 in Proposition 4.1, (2) is a sufficient condition for this system
with K = c to be positive recurrent. Summarizing the results above, we have
the following.

Proposition 4.3. The conditions (1) for K > c and (2) for K = c are suf-

ficient conditions for MAP/PH/c/K retrial queue with vacation under asyn-

chronous vacation start up rule and single vacation policy to be positive recur-

rent.

4. MAP/PH/c/K retrial queue with vacation under asynchronous and mul-

tiple vacation rule. Note that under the asynchronous and multiple vacation
rule, the number of working servers cannot be greater than the number of cus-
tomers in service facility. However, A(t) is the same as that of the case with
single vacation rule and the following holds.

Proposition 4.4. The conditions (1) for K > c and (2) for K = c are suf-

ficient conditions for MAP/PH/c/K retrial queue with vacation under asyn-

chronous vacation start up rule and multiple vacation policy to be positive re-

current.

5. Nonergodicity condition

Now we derive the stochastic order relation used for the proof of noner-
godicity condition. For convenience, we introduce some notation and de-
fine a partial order for vectors. Let xxx = (x1, . . . , xn), yyy = (y1, . . . , yn) and
zzz = (z − 1, . . . , zm). Define a partial order xxx ≤ yyy by xi ≤ yi for all 1 ≤ i ≤ n

and (xxx−yyy)+ = ((x1−y1)
+, . . . , (xn−yn)

+), where x+ = max(x, 0) and [xxx : zzz] =
(x1, . . . , xn, z1, . . . , zm) the concatenation of xxx and zzz. For E ⊂ {1, 2, . . . , k}, de-
note eeek(E) = (1(j ∈ E), j = 1, 2, . . . , k), where 1(·) is the indicator function,
the k-dimensional vector whose jth component is 1 if j ∈ E and 0 if j /∈ E.

Proposition 5.1. Denote by Σ1 and Σ2, the ordinary G/G/c queueing system

with infinite capacity and G/G/c/K retrial queue with general retrial time and

the servers may not be fully available due to a vacation of servers, respectively.

Once entering the service facility, the customer is served in a First-Come-First-

Served (FCFS) fashion and leaves the system upon service completion. We

assume that Σ1 and Σ2 have the same arrival process and the same distribution

of service times. Let Zi(t) be the number of customers in the system Σi, i =

1, 2. Then ZZZ1 = {Z1(t), t ≥ 0} ≤st ZZZ
2 = {Z2(t), t ≥ 0}, where ≤st denotes

the usual stochastic ordering of stochastic processes.

Proof. It is sufficient to show that one can construct two stochastic processes

ẐZZ
i
= {Ẑi(t), t ≥ 0}, i = 1, 2 on a common probability space such that ẐZZ

i d
= ZZZ

i,

where X
d
= Y means that X and Y have the same distribution and Ẑ1(t) ≤

Ẑ2(t) for all t ≥ 0, e.g. see [20]. The construction procedure is similar to that
of [19] and we sketch the proof.
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Let (Ω,F , P ) be a probability space on which the independent stochastic pro-

cesses Â = {T a
n , n = 0, 1, . . .}, Ŝ = {Sn, n = 0, 1, . . .}, V̂ = {Vn, n = 0, 1, . . .},

R̂ = {R̂n, n = 0, 1, . . .} are defined. Here Â and Ŝ are for the common arrival
process and common service sequence in both systems Σ1 and Σ2, respectively,
V̂ is for the sequence of vacation times and R̂ is for retrials in the system Σ2.

Let ẐZZ
i
be the stochastic process corresponding to ZZZi of the system Σi with

common arrival process Â, common service sequence Ŝ for i = 1, 2 and the
sequence V̂ of vacation time and retrial process R̂ for i = 2. We assume that
Ẑ1(0) = Ẑ2(0) = 0, that is, both systems start with empty state. Since the
system state can be changed by the events of arrivals, service completions, re-
trials, vacations and returning from vacation, it suffices to observe the system
only when these events occur. Let Tn be the time when the nth event of any of
the types in any system takes place. Denote by Ci

k, k ≥ 1 be the kth customer
to enter the service facility of Σi, i = 1, 2. Note that since Σ1 has infinite size
of buffer, C1

k is the kth customer arriving to Σ1. Let ξik(t) be the remaining
service time of Ci

k at time t. If Ci
k completes its service time at time s, then

ξik(t) = 0 for t ≥ s and if Ci
k is in queue of service facility at time t, then

ξik(t) = Sk, the service time of Ci
k.

Let Ẑi
n = Ẑi(Tn) and ξik,n = ξik(Tn). Let An be the number of arrivals to

the system by Tn and Ξi
n = (ξik,n, k = 1, 2, . . . , An), i = 1, 2. We shall show the

following by induction on n:

(3) (i) Ẑ1
n ≤ Ẑ2

n; (ii) Ξ1
n ≤ Ξ2

n.

It can be easily seen that the inequalities (i) and (ii) of (3) hold until a service
completion occurs and we assume the inequalities (3) hold for k = 1, 2, . . . , n.

Let T b,i
k be the epoch of the kth arrival to the service facility of Σi, and T s,i

k and

T
c,i
k the epoch of starting service and service completion time of the customer
Ci

k, respectively. Since Σ
1 has a buffer of infinite size in service facility and the

customers C1
j and C2

j , 1 ≤ j ≤ k are served in FIFO rule with the same length

of service time Sj and the number of available servers in Σ1 is always greater
than or equal to that of Σ2, we have that

(4) T
b,1
k = T

a,1
k ≤ T

b,2
k , T

s,1
k ≤ T

s,2
k , T

c,1
k ≤ T

c,2
k .

We classify the customers that arrive to the system by time Tn as follows: for
i = 1, 2,

Ii0,n = {k ≥ 1 : Ci
k completed its service by Tn},

Ii1,n = {k ≥ 1 : Ci
k is being served at Tn},

Ii2,n = {k ≥ 1 : Ci
k is in queue of service facility at Tn},

I23,n = {k ≥ 1 : C2
k is in orbit at Tn}.

It follows from the induction hypothesis and the relations (4) that

I12,n ⊂ I22,n ∪ I23,n, I
2
1,n ⊂ I10,n ∪ I11,n.



998 Y. W. SHIN

Now we show the inequalities of (3) hold for n + 1 in each class of the
events of external arrival, retrial and service completion, end of a vacation. Let
τn = Tn+1 − Tn.

Case 1. External arrival. In this case, Ẑi
n+1 = Ẑi

n + 1, i = 1, 2 and

Ξi
n+1 = [(Ξi

n − τneeeAn
(Ii1,n))

+ : Sn+1]), i = 1, 2

and it can be easily seen that (3) holds for n+ 1.
Case 2. Service completion. Let

G1 = (I11,n − I21,n) ∪ {k ∈ I11,n ∩ I21,n : ξ1k,n < ξ2k,n},

G2 = I10,n ∩ I21,n,

G3 = {k ∈ I11,n ∩ I21,n : ξ1k,n = ξ2k,n}

and

τ(Gj) = min{ξik,n : k ∈ Gj , i = 1, 2}, j = 1, 2, 3.

If a service completion occurs at Tn+1, then τn = min(τ(G1), τ(G2), τ(G3)).
Since ξ1k,n ≤ ξ2k,n, 1 ≤ k ≤ An and ξ1k,n = 0 for k ∈ G2, we have that

ξ1k,n+1 = 0 ≤ (ξ2k,n − τn)
+ = ξ2k,n+1, k ∈ G2,

ξ1k,n+1 = (ξ1k,n − τn)
+ ≤ (ξ2k,n − τn)

+ = ξ2k,n+1, k /∈ G2

and hence Ξ1
n+1 ≤ Ξ2

n+1. It remains to show that Ẑ1
n+1 ≤ Ẑ2

n+1.
(i) If τn = τ(G1) or τn = τ(G3), then by induction hypothesis we have that

Ẑ1
n+1 = Z1

n − |Gj | ≤ Z2
n − |Gj | ≤ Ẑ2

n+1, j = 1, 3

where |A| is the number of elements in the set A.
(ii) If τn = τ(G2), then |G2| ≥ 1 and Z1

n ≤ Z2
n − |G2| and hence we have

that

Ẑ1
n+1 = Z1

n ≤ Z2
n − |G2| = Ẑ2

n+1.

Case 3. Retrial in Σ2. In this case, Ẑ1
n+1 = Z1

n ≤ Z2
n = Ẑ2

n+1. If
a customer at orbit enters the service facility of Σ2 at time Tn+1 and the
customer is C2

k , then the customer C2
k enters the service facility at Tn+1, then

k ∈ I23,n ⊂ ∪2
j=0I

1
j and the service time of C2

k is already determined by the

service time Sk of C1
k and hence ξ1k,n+1 = (ξ1k,n − τn)

+ ≤ Sk = ξ2k,n+1. Thus by

induction hypothesis Ξ1
n+1 ≤ Ξ2

n+1.

Case 4. Returning from vacation in Σ2. In this case, Ẑ1
n+1 = Z1

n ≤

Z2
n = Ẑ2

n+1. If k ∈ I2k,n ⊂ ∪2
j=0I

1
j , the service time of C2

k is already determined

by the service time Sk of C1
k and hence ξ1k,n+1 = (ξ1k,n − τn)

+ ≤ Sk = ξ2k,n+1.

Thus by induction hypothesis Ξ1
n+1 ≤ Ξ2

n+1. �

Remark. The relation (4) is a key result for the proof of Proposition 5.1. If
Σ1 is a G/G/c vacation queue with (a, b) vacation policy, then the relation

T
s,1
k ≤ T

s,2
k may not hold because the number of available servers in Σ1 may

be less than that of Σ2 by a vacation.
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In the proof of Proposition 5.1, we do not use the specific vacation policy.
Thus Proposition 5.1 holds for the system under any vacation policy. It is well
known that if ρ = λ

cµ > 1, where λ and µ are arrival rate and service rate of

each server respectively, then the ordinary G/G/c is not stable in the sense
that there exists no stationary workload process e.g. see [3]. We have from
Proposition 5.1 the following.

Proposition 5.2. If ρ > 1, then the G/G/c/K retrial queues in which servers

may take a vacation is not stable.

Appendix. Proof of Proposition 3.1

We prove the ergodicity condition of the Markov chain ΨΨΨ based on the
following mean drift method, see [23] or [8, Statement 8].

Theorem A.3. Let {X(t), t ≥ 0} be a Markov process with discrete state

space S and transition rates qsp,
∑

p∈S
qsp = 0. Assume that there exists a test

function (or called Lyapunov function) ϕ(s) on S that is bounded from below

such that ys =
∑

p∈S
ϕ(p)qsp < ∞ for all s ∈ S and for some ǫ > 0, ys < −ǫ

for all s ∈ S except perhaps a finite number of states. Then {X(t), t ≥ 0} is

regular and ergodic.

Proof of Proposition 3.1. We introduce subsets of the states G = {1, 2, . . . , g}
of PH(θθθ,UUU) distribution of retrial times. Let G(1) = {i ∈ G : γi > 0} and for
2 ≤ k ≤ k0

G(k) = {i ∈ G : i /∈ ∪k−1
k=1G(k) and uij > 0 for some j ∈ G(k − 1)},

where k0 is a positive integer such that G(k0) is nonempty and ∪k0

h=1G(h) = G. If
γi > 0 for all i ∈ G, then k0 = 1 and G(1) = G. It is clear that G(1) is nonempty
and the customer whose retrial phase is i ∈ G(k) can retry after (at least) k

transitions. Let R(k) = ∪k0

h=kG(h) and |nnn(k)| =
∑

i∈R(k) ni, k = 1, 2, . . . , k0
for nnn = (n1, . . . , ng).

Let z = 1
t0
> 1 and set

xxxk =
1

zK−k
H(k)H(k+1) · · ·H(K−1)xxxK , k = 0, 1, . . . ,K − 1,

then it can be easily seen that the M -dimensional vector

xxx =






xxx0
...
xxxK






satisfies (Q2 − zI∗)xxx = 0, where I∗ = IM − I∗. Let ϕ(nnn) =
∑k0

k=0 ϕk(nnn), where

ϕ0(nnn) = z|nnn|xxx,

ϕk(nnn) = az|nnn(k)|eee, k = 1, 2, . . . , k0,
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and a > 0 will be determined later. It is sufficient from Theorem A.3 to show
that there exists a positive number ǫ > 0 such that

(A.1) ψ(nnn) =
∑

nnn′
∈Z

g

+

Q(nnn,nnn′)ϕ(nnn′) =

k0∑

k=0

Φk(nnn) ≤ −ǫeee

for all but a finite number of nnn ∈ Z
g
+, where

Φk(nnn) =
∑

nnn′∈Z
g

+

Q(nnn,nnn′)ϕk(nnn
′), k = 0, 1, . . . , k0.

Some algebra yields that

Φ0(nnn) = z|nnn|−1[z(Q1 + zQ0)xxx+ (nnn · γγγ)(Q2 − zI∗)xxx]

= z|nnn|−1z(Q1 + zQ0)xxx,

where (Q2 − zI∗)xxx = 0 is used. Similarly, using R(1) = G, Q1eee = −Q0eee and
Q2eee = I∗eee we have that

Φ1(nnn) = az|nnn|−1(z − 1)(zQ0eee− (nnn · γγγ)I∗eee).

Let

ψ1(nnn) = z−(|nnn|−1)(Φ0(nnn) + Φ1(nnn))

= z(Q1 + zQ0)xxx+ a(z − 1)zQ0eee− a(z − 1)(nnn · γγγ)I∗eee.

Noting from the construction of xxx that the last zK elements of z(Q1 + zQ0)xxx
is

[z(Q1 + zQ0)xxx]K = z2A(t0)xxxK < 0

and a(z − 1)(nnn · γγγ)I∗eee tends to infinite, we can take a > 0 so small that
[z(Q1+ zQ0)xxx]K + a(z− 1)zQ0eee < 0. Since the firstM − zK elements of ψ1(nnn)
tends to −∞ as ni (i ∈ G(1)) goes to infinite, there exist an ǫ1 > 0 and an
integer K1 > 0 such that ψ1(nnn) < −ǫ1eee if ni > K1 for some i ∈ G(1).

Since γi = 0 for i ∈ R(k), k ≥ 2 and Q2eee = eee − I∗eee, we can easily obtain
the followings:

g
∑

i=1

Q(nnn,nnn− eeei)ϕk(nnn− eeei) = az|nnn(k)|(nnn · γγγ)Q2eee = az|nnn(k)|(nnn · γγγ)(eee − I∗eee),

g
∑

i=1

Q(nnn,nnn)ϕk(nnn) = az|nnn(k)|

[

Q1eee− (nnn · uuu)eee +

(
g
∑

i=1

niγiθi

)

I∗eee

]

,

g
∑

i=1

Q(nnn,nnn+ eeei)ϕk(nnn+ eeei) = az|nnn(k)|



(z − 1)
∑

i∈R(k)

θi + 1



Q0eee.

Furthermore,
g
∑

i=1

g
∑

j=1,j 6=i

Q(nnn,nnn− eeei + eeej)ϕk(nnn− eeei)
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= a

g
∑

i=1

ni

g
∑

j=1,j 6=i

uijz
|(nnn−eeei+eeej)(k)|IMeee + a

g
∑

i=1

niγi

g
∑

j=1,j 6=i

θjz
|(nnn−eeei+eeej)(k)|I∗eee

= az|nnn(k)|



(nnn ·uuu)− (nnn · γγγ)−
1

z
(z − 1)

∑

i∈R(k)

ni

∑

j /∈R(k)

uij

+(z − 1)
∑

i/∈R(k)

ni

∑

j∈R(k)

uij



eee,

+ az|nnn(k)|
∑

i/∈R(k)

niγi



(z − 1)
∑

j∈R(k)

θj + 1



 I∗eee.

Summarizing the results above with Q1eee = −Q0eee yields that for 2 ≤ k ≤ k0,

Φk(nnn) = az|nnn(k)|(z − 1)




∑

i∈R(k)

θi



Q0eee

+ az|nnn(k)|
∑

i∈G(1)

niγi



(z − 1)
∑

j∈R(k)

θj + θi



 I∗eee

+ az|nnn(k)|−1(z − 1)



z
∑

i/∈R(k)

ni

∑

j∈R(k)

uijeee −
∑

i∈R(k)

ni

∑

j /∈R(k)

uijeee



 .

Since uij = 0 for i ∈ G(k), j ∈ G(l), l ≤ k − 2, we have
∑

i∈R(k)

ni

∑

j /∈R(k)

uij =
∑

i∈R(k)

ni

∑

j∈G(1)∪···G(k−1)

uij =
∑

i∈G(k)

ni

∑

j∈G(k−1)

uij .

Note that

k0∑

k=2

z|nnn(k)|
∑

i/∈R(k)

ni

∑

j∈R(k)

uijeee =

k0∑

k=2

z|nnn(k)|
k−1∑

l=1

∑

i∈G(l)

ni

∑

j∈R(k)

uijeee

=

k0−1∑

l=1

∑

i∈G(l)

ni

k0∑

k=l+1

z|nnn(k)|
∑

j∈R(k)

uijeee

=
∑

i∈G(1)

ni

k0∑

k=2

z|nnn(k)|
∑

j∈R(k)

uijeee+

k0∑

l=2

∑

i∈G(l)

ni

k0∑

k=l+1

z|nnn(k)|
∑

j∈R(k)

uijeee.

Thus

ψ(nnn) = z|nnn|−1
6∑

m=1

ψm(nnn),
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where

ψ2(nnn) = az(z − 1)

k0∑

k=2

1

z|nnn|−|nnn(k)|




∑

i∈R(k)

θi



Q0eee,

ψ3(nnn) = az
∑

i∈G(1)

k0∑

k=2

niγi

z|nnn|−|nnn(k)|



(z − 1)
∑

j∈R(k)

θj + θi



 I∗eee,

ψ4(nnn) = az(z − 1)
∑

i∈G(1)

k0∑

k=2

ni

z|nnn|−|nnn(k)|

∑

j∈R(k)

uijeee,

ψ5(nnn) = az(z − 1)

k0∑

k=2

∑

i∈G(k)

k0∑

l=k+1

ni

z|nnn|−|nnn(l)|

∑

j∈R(l)

uijeee,

ψ6(nnn) = −a(z − 1)

k0∑

k=2

∑

i∈G(k)

ni

z|nnn|−|nnn(k)|

∑

j∈G(k−1)

uijeee.

Since

|nnn| − |nnn(k)| =
∑

i∈G(1)∪···∪G(k−1)

ni, 2 ≤ k ≤ k0

and limn→∞

n
zn = 0, ψl(nnn), l = 2, . . . , 6 tend to zero vector if for some i ∈ G(1),

ni goes to infinity. Thus there exist a positive number ǫ > 0 and a positive
integer N1 such that ψ(nnn) < −z|nnn|−1ǫeee if ni > N1 for some i ∈ G(1).

Let F(1) = {nnn ∈ Z
g
+ : ni ≤ N1 for all i ∈ G(1)}. Noting that for nnn ∈ F(1),

|nnn| − |nnn(2)| =
∑

i∈G(1)

ni ≤ N1g, nnn · γγγ =
∑

i∈G(1)

niγi ≤ N1γγγeee

and for 2 ≤ k < l ≤ k0,

|nnn(k)| − |nnn(l)| =
∑

i∈G(k)∪···∪G(l−1)

ni ≥ 0,

we can see that z|nnn|−|nnn(2)|ψm(nnn), m = 2, 3, 4, 5 are bounded from above on
F(1). Since

z|nnn|−|nnn(2)|ψ6(nnn) = − a(z − 1)
∑

i∈G(2)

ni

∑

j∈G(1)

uijeee

− a(z − 1)

k0∑

k=3

∑

i∈G(k)

ni

z
∑

t∈G(2)∪···∪G(k)
nt

∑

j∈G(k−1)

uijeee

≤ − a(z − 1)
∑

i∈G(2)

ni

∑

j∈G(1)

uijeee

and if i ∈ G(2), then uij > 0 for some j ∈ G(1), it can be seen that each

component of z|nnn|−|nnn(2)|ψ6(nnn) tends to −∞ as ni → ∞ for some i ∈ G(2).
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Therefore there exist a positive number ǫ2 > 0 and a positive integer N2 such
that ψ(nnn) ≤ −z|nnn(2)|−1ǫ2eee for nnn ∈ F(1) with ni > N2 for some i ∈ G(2).

Repeating this procedure, we can see that there exist a positive number
ǫk > 0 and a positive integer Nk such that ψ(nnn) ≤ −z|nnn(k)|−1ǫkeee for nnn ∈
F(k − 1) = {nnn ∈ Z

g
+ : ni ≤ Nl for all i ∈ G(l), l = 1, 2, . . . , k − 1} with

ni > Nk for some i ∈ G(k), k = 2, . . . , k0. Thus (A.1) holds possibly except for
nnn ∈ Z

g
+ with ni ≤ max(N1, . . . , Nk0

), i = 1, 2, . . . , g. �
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[3] F. Bacelli and P. Brémaud, Elements of Queueing Theory, Palm Martingale Calculus

and Stochastic Recurrences, 2nd ed., Hidelberg, Springer-Verlag, 2003.
[4] L. Breuer, A. Dudin, and V. Klimenok, A Retrial BMAP/PH/N system, Queueing

Syst. 40 (2002), no. 4, 433–457.
[5] G. Choudhury, Steady state analysis of an M/G/1 queue with linear retrial policy and

two phase service under Bernoulli vacation schedule, Appl. Math. Model. 32 (2008),
no. 12, 2480–2489.

[6] G. Choudhury and J. C. Ke, A batch arrival retrial queue with general retrial times

under Bernoulli vacation schedule for unreliable server and delaying repair, Appl. Math.
Model. 36 (2012), no. 1, 255–269.

[7] J. E. Diamond and A. S. Alfa, Matrix analytic methods for a multi-server retrial queue

with buffer, Top 7 (1999), no. 2, 249–266.
[8] G. I. Falin and J. G. C. Templeton, Retrial Queues, London, Chapman, Hall, 1997.
[9] A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood

Ltd., 1981.
[10] Q. M. He, H. Li, and Y. Q. Zhao, Ergodicity of the BMAP/PH/s/s + K retrial queue

with PH-retrial times, Queueing Systems Theory Appl. 35 (2000), no. 1-4, 323–347.
[11] J. C. Ke, C. H. Lin, J. Y. Yang, and Z. G. Zhang, Optimal (d, c)vacation policy for a

finite buffer M/M/c queue with unreliable servers and repairs, Appl. Math. Model. 33
(2009), no. 10, 3949–3963.

[12] B. Kim, Stability of a retrial queueing network with different class of customers and

restricted resource pooling, J. Ind. Manag. Optim. 7 (2011), no. 3, 753–765.
[13] J. Kim and B. Kim, A survey of retrial queueing systems, Ann. Oper. Res.; DOI

10.1007/s10479-015-2038-7.
[14] B. K. Kummar, R. Rukmani, and V. Thangaraj, An M/M/c retrial queueing system

with Bernoulli vacations, J. Syst. Sci. Syst. Eng. 18 (2009), 222–242.
[15] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic

Modelling, Philadelphia, ASA-SIAM, 1999.
[16] D. Lucantoni, New results on the single server queue with a batch Markovian arrival

process, Comm. Statist. Stochastic Models 7 (1991), no. 1, 1–46.
[17] E. Morozov, A multiserver retrial queue: regenerative stability analysis, Queueing Syst.

56 (2007), no. 3-4, 157–168.
[18] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Ap-

proach, Baltimore, Johns Hopkins University Press, 1981.
[19] Y. W. Shin, Monotonocity properties in various retrial queues and their applications,

Queueing Syst. 53 (2006), 147–157.



1004 Y. W. SHIN

[20] D. Stoyan, Comparison Methods for Queues and Other Stochastic Models, John Wiley
& Sons, New York, 1983.

[21] H. Takagi, Queueing Analysis, Vol. 1. Vacation Systems, Elsevier Science, Amsterdam,
1991.

[22] N. Tian and Z. G. Zhang, Vacation Queuing Models: Theory and Applications, Springer,
New York, 2006.

[23] R. L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity of Markov

processes, Math. Proc. Cambridge Philos. Soc. 78 (1975), part 1, 125–136.
[24] X. Xu and Z. G. Zhang, Analysis of multiple-server queue with a single vacation (e, d)-

policy, Performance Evaluation 63 (2006), 825–838.

Yang Woo Shin

Department of Statistics

Changwon National University

Changwon 51140, Korea

E-mail address: ywshin@changwon.ac.kr


