DOI QR코드

DOI QR Code

해조류 추출물의 In Vitro 항치매 활성

In Vitro Screening for Anti-Dementia Activities of Seaweed Extracts

  • 손현정 (한국식품연구원 기능성식품연구본부) ;
  • 엄민영 (한국식품연구원 기능성식품연구본부) ;
  • 김인호 (한국식품연구원 기능성식품연구본부) ;
  • 조승목 (한국식품연구원 기능성식품연구본부) ;
  • 한대석 (한국식품연구원 기능성식품연구본부) ;
  • 이창호 (한국식품연구원 기능성식품연구본부)
  • Son, Hyun Jung (Division of Functional Food Research, Korea Food Research Institute) ;
  • Um, Min Young (Division of Functional Food Research, Korea Food Research Institute) ;
  • Kim, Inho (Division of Functional Food Research, Korea Food Research Institute) ;
  • Cho, Suengmok (Division of Functional Food Research, Korea Food Research Institute) ;
  • Han, Daeseok (Division of Functional Food Research, Korea Food Research Institute) ;
  • Lee, Changho (Division of Functional Food Research, Korea Food Research Institute)
  • 투고 : 2016.03.25
  • 심사 : 2016.05.23
  • 발행 : 2016.07.31

초록

본 연구에서는 해조류 추출물 20종의 치매 예방 및 개선 소재로서의 가치를 검토하기 위해 총폴리페놀 함량, ABTS radical 소거능, acetylcholinesterase(AChE) 저해 활성, ${\beta}$-secretase 효소 억제 활성 및 신경세포 보호 효과를 비교하였다. 해조류 추출물의 총폴리페놀 함량과 ABTS radical 소거능을 측정한 결과 감태 추출물의 총폴리페놀 함량이 가장 높았으며, 검둥감태와 감태 추출물이 높은 ABTS radical 소거능을 나타내었다. AChE 저해 활성을 검토한 결과 감태, 검둥감태, 바위수염이 30% 이상의 높은 저해 활성을 보였고 그중 감태가 가장 높은 억제율을 나타내었다. 또한, ${\beta}$-secretase 효소 억제 활성은 검둥감태, 감태, 왜모자반 추출물에서 관찰되었다. $H_2O_2$에 의해 유도된 신경세포 독성에 대한 보호 효과는 감태, 검둥감태, 왜모자반 추출물 $100{\mu}g/mL$ 농도에서 관찰되었다. 이상의 결과로 미루어 보았을 때 감태 추출물이 치매 예방 및 개선제로서의 활용 가능성이 가장 뛰어난 것으로 생각되며, 추가로 생리활성 물질 구명 및 작용기전 입증을 위한 후속 연구가 진행되어야 할 것으로 생각한다.

We investigated that methanolic extracts of 20 kinds of seaweeds from Jeju Island for their antioxidant activities, acetylcholinesterase and ${\beta}$-secretase inhibitory activities, and neuronal survival in order to evaluate their potentials as anti-dementia agents. Ecklonia cava extracts had the highest total polyphenol content among the 20 seaweed extracts. The antioxidant activity of seaweed extracts was measured by using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. It was found that Ecklonia kurome extracts had the highest ABTS scavenging activity ($IC_{50}=0.07{\pm}0.01mg/mL$). As a result, Ecklonia cava, Ecklonia kurome, and Myelophycus simplex extracts were found to be the most effective in terms of acetylcholinesterase inhibitory activity. In the ${\beta}$-secretase activity assay, Ecklonia cava and Ecklonia kurome extracts were effectively inhibited ($84.41{\pm}1.70%$ and $81.17{\pm}2.43%$, respectively). As expected, neuronal cell death induced by $H_2O_2$ in SH-SY5Y cells was diminished by Ecklonia cava, Ecklonia kurome, and Sargassum yezoense extracts. Taken together, these results showed that Ecklonia cava extract has potential anti-dementia activity, which suggests that it might provide an effective strategy for improving dementia.

키워드

참고문헌

  1. KOSTAT. 2015. Elderly statistics 2015. Statistics Korea, Deajeon, Korea.
  2. Morris JC. 1996. Classification of dementia and Alzheimer's disease. Acta Neurol Scand 165: 41-50.
  3. Selkoe DJ. 1999. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399: A23-A31. https://doi.org/10.1038/399a023
  4. Hwang DY, Chae KR, Kang TS, Hwang JH, Lim CH, Kang HK, Goo JS, Lee MR, Lim HJ, Min SH, Cho JY, Hong JT, Song CW, Paik SG, Cho JS, Kim YK. 2002. Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J 16: 805-813. https://doi.org/10.1096/fj.01-0732com
  5. Park GH, Jang JH. 2013. Protective effect of luteolin against ${\beta}$-amyloid-induced cell death and damage in BV-2 microglial cells. Kor J Herbology 28: 79-86.
  6. Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH. 1986. Molecular froms of acetylcholinesterase in Alzheimer's disease. Fed Proc 45: 2982-2988.
  7. Talesa VN. 2001. Acetylcholinesterase in Alzheimer's disease. Mech Ageing Dev 122: 1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
  8. Figueiro M, Ilha J, Pochmann D, Porciuncula LO, Xavier LL, Achaval M, Nunes DS, Elisabetsky E. 2010. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama). Phytomedicine 17: 956-962. https://doi.org/10.1016/j.phymed.2010.03.009
  9. Kim JA, Lee JM. 2004. The changes of biologically functional compounds and antioxidant activities in Hizikia fusiformis with drying methods. Korean J Food Cult 19: 200-208.
  10. Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, Onsoyen E. 2005. Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr 45: 497-510. https://doi.org/10.1080/10408390500285673
  11. MacArtain P, Gill CI, Brooks M, Campbell R, Rowland IR. 2007. Nutritional value of edible seaweeds. Nutr Rev 65: 535-543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
  12. Konig GM, Kehraus S, Seibert SF, Abdel-Lateff A, Muller D. 2005. Natural products from marine organisms and their associated microbes. ChemBioChem 7: 229-238.
  13. Choi HJ, Seo YW, Lim SY. 2007. Effect of solvent extracts from Sargassum hemiphyllum on inhibition of growth of human cancer cell lines and antioxidant activity. J Life Sci 17: 1533-1538. https://doi.org/10.5352/JLS.2007.17.11.1533
  14. Beak G, Goo BG, Ahn BJ, Park JK. 2013. Effects of watersoluble polysaccharides from Tott on lipid absorption and animal body weight. J Korean Sco Food Sci Nutr 42: 556-562. https://doi.org/10.3746/jkfn.2013.42.4.556
  15. Cho S, Han D, Kim SB, Yoon M, Yang H, Jin YH, Jo J, Yong H, Lee SH, Jeon YJ, Shimizu M. 2012. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from Ecklonia cava edible brown seaweed. Biosci Biotechnol Biochem 76: 163-168. https://doi.org/10.1271/bbb.110702
  16. Ryu G, Park SH, Kim ES, Choi BW, Ryu SY, Lee BH. 2003. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch Pharm Res 26: 796-799. https://doi.org/10.1007/BF02980022
  17. Oh JK, Song KJ, Ji MY, Yoon JH. 2014. Effect of Ecklonia cava extracts supplementation on cognitive ability in mice. Kor J Herbology 29: 103-109. https://doi.org/10.6116/kjh.2014.29.6.103.
  18. Folin O, Denis W. 1912. On phosphotungastic phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  19. Arnao MB, Cano A, Acosta M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73: 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1
  20. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  21. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
  22. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. 1995. The characterization of antioxidants. Food Chem Toxicol 33: 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
  23. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. 2000. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L). J Korean Soc Food Sci Nutr 29: 1127-1132.
  24. Kim JH, Kang HM, Lee SH, Lee JY, Park LY. 2015. Antioxidant and ${\alpha}$-glucosidase inhibition activity of seaweed extracts. Korean J Food Preserv 22: 290-296. https://doi.org/10.11002/kjfp.2015.22.2.290
  25. Cho SH, Kang SE, Cho JY, Kim AR, Park SM, Hong YK, Ahn DH. 2007. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J Med Food 10: 479-485. https://doi.org/10.1089/jmf.2006.099
  26. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an im proved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Uchida K, Stadtman ER. 1993. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra-and intermolecular cross-linking reaction. J Biol Chem 268: 6388-6393.
  28. Coyle JT, Price DL, DeLong MR. 1983. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219: 1184-1190. https://doi.org/10.1126/science.6338589
  29. Shao D, Zou C, Luo C, Tang X, Li Y. 2004. Synthesis and evaluation of tacrine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 14: 4639-4642. https://doi.org/10.1016/j.bmcl.2004.07.005
  30. Myung CS, Shin HC, Bao HY, Yeo SJ, Lee BH, Kang JS. 2005. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch Pharm Res 28: 691-698. https://doi.org/10.1007/BF02969360
  31. Lee BH, Stein SM. 2004. Improvement of learning behavior of mice by an antiacetylcholinesterase and neuroprotective agent NX42, a Laminariales-alga extract. Korean J Food Sci Technol 36: 974-978.
  32. Gao Y, Li C, Yin J, Shen J, Wang H, Wu Y, Jin H. 2012. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of A${\beta}$ peptide in rats. Environ Toxicol Pharmacol 33: 304-311. https://doi.org/10.1016/j.etap.2011.12.022
  33. Lin J, Huang L, Yu J, Xiang S, Wang J, Zhang J, Yan X, Cui W, He S, Wang Q. 2016. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar Drugs 14: 67. https://doi.org/10.3390/md14040067
  34. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. 1999. ${\beta}$-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735-741. https://doi.org/10.1126/science.286.5440.735
  35. Kang IJ, Jeon YE, Yin XF, Nam JS, You SG, Hong MS, Jang BG, Kim MJ. 2011. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem Toxicol 49: 2252-2259. https://doi.org/10.1016/j.fct.2011.06.023
  36. Jung GT, Ju IO, Choi JS, Hong JS. 2000. The antioxidative, antimicrobial and nitrite scavenging effects of Schizandra chinensis RUPRECHT (Omija) seed. Korean J Food Sci Technol 32: 928-935.
  37. Kirkinezos IG, Moraes CT. 2001. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12: 449-457. https://doi.org/10.1006/scdb.2001.0282
  38. Heo SJ, Park EJ, Lee KW, Jeon YJ. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96: 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013

피인용 문헌

  1. Recent advances in pharmacological research on Ecklonia species: a review vol.40, pp.9, 2017, https://doi.org/10.1007/s12272-017-0948-4
  2. Protective Effect of Fucoidan Extract from Ecklonia cava on Hydrogen Peroxide-Induced Neurotoxicity vol.28, pp.1, 2018, https://doi.org/10.4014/jmb.1710.10043
  3. 초록갈파래(Umbraulva japonica)에서 분리한 세균의 군집 구조 분석 및 항균 활성 vol.46, pp.2, 2016, https://doi.org/10.4014/mbl.1803.03016
  4. 자연 발효 감태 추출물로 염색한 면직물의 염색 특성과 바이오 기능성 vol.42, pp.3, 2018, https://doi.org/10.5850/jksct.2018.42.3.516
  5. 다시마 물 추출액과 발효액의 항산화 및 항염증 활성 vol.29, pp.5, 2016, https://doi.org/10.5352/jls.2019.29.5.596
  6. Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer’s Disease vol.17, pp.11, 2016, https://doi.org/10.3390/md17110609
  7. Memory‐enhancing effects ofIshige foliaceaextract: In vitro and in vivo study vol.44, pp.4, 2016, https://doi.org/10.1111/jfbc.13162
  8. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication—Potential Implication of Sirtuins vol.18, pp.5, 2016, https://doi.org/10.3390/md18050242
  9. 해조류 첨가 가정간편식(HMR) 즉석밥의 소화율 및 항산화 활성 vol.53, pp.3, 2016, https://doi.org/10.5657/kfas.2020.0395
  10. 추출용매에 따른 톳(Hizikia fusiformis) 추출물의 항산화 및 생리활성 비교 vol.53, pp.6, 2016, https://doi.org/10.5657/kfas.2020.0886
  11. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.288
  12. 쌍발이모자반(Sargassum patens) 추출물의 항산화 및 항염효과 vol.11, pp.7, 2016, https://doi.org/10.22156/cs4smb.2021.11.07.264
  13. Characterization of β-secretase inhibitory extracts from sea cucumber (Stichopus japonicus) hydrolysis with their cellular level mechanism in SH-SY5Y cells vol.247, pp.8, 2016, https://doi.org/10.1007/s00217-021-03770-6
  14. Comparision of Antioxidant and Physiological Activities of Processed Waters Generated during Red Bean Paste Preparation vol.50, pp.11, 2016, https://doi.org/10.3746/jkfn.2021.50.11.1168