DOI QR코드

DOI QR Code

Synthesis of Multiwall Carbon Nanotube/Graphene Composite by Aerosol Process and Its Characterization for Supercapacitors

에어로졸 공정에 의한 Multiwall carbon nanotube/Graphene 복합체 제조 및 슈퍼커패시터 특성평가

  • Jo, Eun Hee (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Sun Kyung (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Chong Min (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Park, Su-Ryeon (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Choi, Ji-hyuk (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources) ;
  • Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience & Mineral Resources)
  • 조은희 (한국지질자원연구원 자원활용연구센터) ;
  • 김선경 (한국지질자원연구원 자원활용연구센터) ;
  • 장한권 (한국지질자원연구원 자원활용연구센터) ;
  • 이총민 (한국지질자원연구원 자원활용연구센터) ;
  • 박수련 (한국지질자원연구원 자원활용연구센터) ;
  • 최지혁 (한국지질자원연구원 자원활용연구센터) ;
  • 장희동 (한국지질자원연구원 자원활용연구센터)
  • Received : 2016.09.30
  • Accepted : 2016.12.25
  • Published : 2016.12.31

Abstract

A multiwall carbon nanotube (MWCNT)/graphene (GR) composite was synthesized for an enhanced supercapacitor. Aerosol spray pyrolysis (ASP) was employed to synthesize the MWCNT/GR composites using a colloidal mixture of MWCNT and graphene oxide (GO). The effect of the weight ratio of the MWCNT/GO on the particle properties including the morphology and layered structure were investigated. The morphology of MWCNT/GR composites was generally the shape of a crumpled paper ball, and the average composite size was about $5{\mu}m$. MWCNT were uniformly dispersed in GR sheets and the MWCNT not only increase the basal spacing but also bridge the defects for electron transfer between GR sheets. Thus, it was increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron in the electrode. Electrochemical data demonstrate that the MWCNT/GR (weight ratio=0.1) composite possesses a specific capacitance of 192 F/g at 0.1 A/g and good rate capability (88% capacity retention at 4 A/g) using two-electrode testing system.

Keywords

References

  1. Allen, M. J., Tung, V. C., and Kaner, R. B. (2010). Honeycomb Carbon: A Review of Graphene, Chemical Reviews, 110, 132-145. https://doi.org/10.1021/cr900070d
  2. Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T., and Shao-Horn, Y. (2011). Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors, Carbon, 49, 457-467. https://doi.org/10.1016/j.carbon.2010.09.042
  3. Cote, L. J., Silva, R. C., and Huang, J. (2009). Flash reduction and patterning of graphite oxide and its polymer composite, Journal of the Aemerican Chemical Society, 131, 11027-11032. https://doi.org/10.1021/ja902348k
  4. Frackowiak, E., and Beguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950. https://doi.org/10.1016/S0008-6223(00)00183-4
  5. Frackowiak, E., and Beguin, F. (2002). Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 40, 1775-1787. https://doi.org/10.1016/S0008-6223(02)00045-3
  6. Huang, N., Kirk, D. W., Thorpe, S. J., Liang, C., Xu, L., Li, W., Zhang, S., and Sun, M. (2014). Effect of carbon nanotube loadings on supercapacitor characteristics, International Journal of Energy Research, 39, 336-343.
  7. Hummers, W. S., and Offeman, R. E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80, 1339. https://doi.org/10.1021/ja01539a017
  8. Jo, E. H., Kim, S. K., Jang, H. D., Chang, H., Roh, K. M., and Kim, T. O. (2013). Preparation of graphene-$TiO_2$ composite by aerosol process and it's characterization for dye-sensitized solar cell, Particle and Aerosol Research, 9, 51-57. https://doi.org/10.11629/jpaar.2013.9.2.051
  9. Kim, J., Kwon, Y., Lee, J. K., and Choi, H. S. (2012). Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor, Korean Chemical Enginerring Research, 50, 1043-1048. https://doi.org/10.9713/kcer.2012.50.6.1043
  10. Kim, S. K., Jang, H. D., Chang, H., and Choi, J. W. (2014). Preparation of Graphene-Palladium Composite by Aerosol Process and It's Characterization for Glucose Biosensor, Particle and Aerosol Research, 10, 53-59. https://doi.org/10.11629/jpaar.2014.10.2.053
  11. Lu, X., Dou, H., Gao, B., Yuan, C., Yang, S., Hao, L., Shen, L., and Zhang, X. (2011). A flecxible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors, Electrochimica Acta, 56, 5115-5121. https://doi.org/10.1016/j.electacta.2011.03.066
  12. Luo, J., Jang, H. D., and Huang, J. (2013). Effect of Sheet Morphology on the Scalability of Graphene-Based Ultracapacitors, ACS Nano, 7, 1464-1471. https://doi.org/10.1021/nn3052378
  13. Miller, J. R. and Simon, P. (2008). Electrochemical Capacitors for Energy Management, Science, 321, 651-652. https://doi.org/10.1126/science.1158736
  14. Shao, Y., El-Kady, M. F., Wang, L. J., Zhang, Q., Li, Y., Wang, H., Mousavi, M. F., and Kaner, R. B. (2015). Graphene-based materials for flexible supercapacitors, Chemical Society Reviews, 44, 3639-3665. https://doi.org/10.1039/C4CS00316K
  15. Xu, B., Yue, S., Sui, Z., Zhang, X., Hou, S., Cao, G., and Yang, Y. (2011). What is the choice for supercapacitors: graphene or graphene oxide?, Energy & Environmental Science, 4, 2826-2830. https://doi.org/10.1039/c1ee01198g
  16. Zhang, L. L., Zhou, R., and Zhao, X. S. (2010). Graphene-based materials as supercapacitor electrodes, Journal of Materials Chemistry, 20, 5983-5992. https://doi.org/10.1039/c000417k
  17. Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A., and Chen, Y. (2013). Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, Scientific Reports, 3, 1408. https://doi.org/10.1038/srep01408
  18. Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A, and Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 332, 1537-1541. https://doi.org/10.1126/science.1200770