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Abstract 

 

This study proposes a single-stage light-emitting diode (LED) tube lamp driver with input-current shaping for T8/T10-type 
fluorescent lamp replacements. The proposed AC–DC LED driver integrates a dual-boost converter with coupled inductors and a 
half-bridge series-resonant converter with a bridge rectifier into a single-stage power conversion topology. This paper presents 
the operational principles and design considerations for one T8-type 18 W-rated LED tube lamp with line input voltages ranging 
from 100 V rms to 120 V rms. Experimental results for the prototype driver show that the highest power factor (PF = 0.988), 
lowest input current total harmonic distortion (THD = 7.22%), and highest circuit efficiency (η = 92.42%) are obtained at an 
input voltage of 120 V. Hence, the proposed driver is feasible for use in energy-efficient indoor lighting applications. 
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I. INTRODUCTION 

Fluorescent lamps are cost-effective gas-discharge lamps 
for general indoor lighting applications. As a result of the 
current issues in environmental protection, carbon reduction 
and energy savings have become a cause for great concern, 
and the search for energy-efficient alternatives for lighting 
applications has intensified at a global scale. The up-to-date 
development of solid-state lighting technology has gained 
traction because of the urgent need for efficient energy usage 
[1]-[5]. Light-emitting diodes (LEDs) are compact electronic 
devices that allow electricity to flow through them in one 
direction to produce a small amount of light. Tube lamps and 
bulbs for household usage include a large number of LEDs; 
thus, these fixtures produce bright light. LEDs offer 
numerous attractive features, such as their non-polluting 

property because of the absence of mercury as a component, 
high luminous efficacy, long lifetime, and significant energy 
savings brought about by their low power consumption 
[6]-[17]. Therefore, LEDs are beginning to replace traditional 
lighting sources used in households and other indoor lighting 
applications. As an illustrated example, Table I shows a 
comparison between a T8-type fluorescent lamp (China 
Electric FL40D-EX) and a T8-type LED tube lamp 
(EVERLIGHT FBW/T8/857/U/4ft) [18], [19]. The two lamps 
share almost the same color temperature and color-rendering 
index, but the LED tube lamp achieves better lighting 
efficiency, consumes less power, and offers longer lamp 
lifetime than its T8-type counterpart. Moreover, the LED tube 
lamp contains no mercury and does not require high ignition 
voltage. Therefore, energy-efficient LED tube lamps have 
become increasingly popular alternatives to fluorescent lamps 
for use in household and other indoor lighting applications, 
such as in public infrastructure, offices, classrooms, and 
parking decks [20]-[25]. Fig. 1 shows a typical two-stage 
driver for a T8-type LED tube lamp. This driver is composed 
of an AC–DC converter with power factor corrections (PFC)  
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TABLE I  
COMPARISON BETWEEN T8-TYPE FLUORESCENT AND LED TUBE 

LAMPS  

Items T8-type 
Fluorescent Lamp 
 (China Electric 
FL20D-EX/18) 

T8-type LED Tube 
Lamp  

(EVERLIGHT 
FBW/T8/857/U/4ft)

Consumed 
Power  

20 W 18 W 

Lumen 
Output 

1,440 lm  1,800 lm 

Lamp 
Current 

0.35 A 0.3 A 

Lighting 
Efficiency 

> 88 lm/W > 100 lm/W 

Color 
Temperature 

6,700 K 5,700 K 

Color 
Rendering 
Index Ra 

> 80 > 80 

Lamp Life > 7,500 h > 35,000 h  
Lamp Base G13 G13 

Mercury 
Content 

Yes No 

Requirement 
for High 
Ignition 
Voltage 

Yes (> 400 V) No 

 

 
Fig. 1. Typical two-stage driver for a T8-type LED tube lamp. 

 
as the first stage (such as a boost converter) and a DC–DC 
converter (such as a buck converter) as the second stage for 
regulating the voltage/current of the LED lamp. The 
converter in each stage requires a separate control scheme, 
and the circuit efficiency is restricted because of the 
two-stage power conversion. A number of single-stage 
AC–DC drivers for T8-type LED tube lamps, which are used 
as alternatives to T8/T10 fluorescent lamps, have been 
introduced, with flyback converters, buck converters, and 
buck-boost converters serving as the main circuit topology of 
the drivers in [23], [24], and [25] and all featuring PFC. 
These single-stage versions offer cost-effectiveness and low 
component counts in comparison with their two-stage 
counterparts; however, their power switches do not include a 
soft-switching function, hence their limited efficiencies. 

In response to these concerns, the present study proposes a 
single-stage AC–DC driver with input-current shaping and 

enhanced circuit efficiency for use in a T8-type LED tube 
lamp. Moreover, this study presents the theoretical analysis of 
the operating modes and the experimental results obtained 
from the prototype circuit of the proposed driver used to 
supply an 18 W-rated T8-type LED tube lamp. The paper is 
organized as follows. Section II describes and analyzes the 
proposed LED tube lamp driver. Section III presents the 
design considerations of the proposed LED tube lamp driver. 
Section IV describes the experimental results obtained from a 
prototype LED driver for an 18 W-rated T8-type LED tube 
lamp with input utility line voltages ranging from 100 V to 
120 V. Finally, Section V provides relevant conclusions. 

 

II. DESCRIPTION AND ANALYSIS OF THE 
PROPOSED LED TUBE LAMP DRIVER  

Fig. 2 shows the proposed LED tube lamp driver, which 
combines a dual-boost converter with coupled inductors. 
Specifically, one boost converter contains a diode Db1, a 
coupled inductor LPFC1, a switch S1, the body diode of switch 
S2, and a DC-linked capacitor CDC; the other boost converter 
includes a diode Db2, a coupled inductor LPFC2, a switch S2, 
the body diode of switch S1, and a capacitor CDC. The figure 
also shows a half-bridge series-resonant converter with a 
bridge rectifier; it includes a DC-linked capacitor CDC, two 
switches S1 and S2, a resonant inductor Lr, a resonant 
capacitor Cr, a full-bridge rectifier D1–D4, and an output 
capacitor Co. These components are combined into a 
single-stage topology for a T8-type LED tube lamp. In 
addition, an LC filter (inductor Lf and capacitor Cf) is 
connected to the input utility line voltage [26].  

To analyze the operations of the proposed driver for an 
LED lamp, the following assumptions are made. 
(a) The switching frequencies of switches S1 and S2 are 

significantly higher than that of the utility line voltage 
vAC. Hence, the sinusoidal utility line voltage can be 
considered as a constant value for each high-frequency 
switching period. 

(b) Power switches are complementarily operated, and their 
inherent diodes are considered. 

(c) The analysis is simplified with the exclusion of the LC 
filter in the analysis of the operation modes of the driver 
circuit. 

(d) The conducting voltage drops of diodes Db1, Db2, D1, D2, 
D3, and D4 are neglected. 

(e) Two coupled inductors (LPFC1 and LPFC2) are designed to 
be operated in discontinuous conduction mode to 
naturally achieve PFC. 

The operating modes and theoretical waveforms of the 
proposed LED tube lamp driver operated during the positive 
half cycle of the input utility line voltage are shown in Figs. 3 
and 4, respectively. The operations are analyzed in detail in 
the following sections. 
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Fig. 2. Proposed single-stage driver for a LED tube lamp. 
 

Mode 1 (t0 ≤ t < t1; in Fig. 3(a)): This mode begins when 
the voltage vDS1 of S1 decreases to zero. Thereafter, the body 
diode of switch S1 is forward-biased at time t0. The resonant 
capacitor Cr provides energy to the resonant inductor Lr, 
capacitors CDC and Co, and LED tube lamp through the body 
diodes D2 and D3 of S1. This mode ends when S1 shifts to the 
on state with zero-voltage switching (ZVS) at time t1.                      

Mode 2 (t1 ≤ t < t2; in Fig. 3(b)): This mode begins when S1 
achieves ZVS turn-on at t1. The input voltage vAC provides 
energy to the coupled inductor LPFC1 through the diode Db1 
and switch S1. The inductor current iLPFC1 linearly increases 
from zero and can be expressed as 

 1
1

1

)2sin(2
)( tt

L

tfv
ti

PFC

ACrmsAC
LPFC   

,     (1) 

where vAC-rms is the root-mean-square (rms) value of the input 
utility line voltage and fAC is the utility line frequency. 

The resonant capacitor Cr still provides energy to the 
resonant inductor Lr, capacitors CDC and Co, and LED tube 
lamp through the switch S1 and diodes D2 and D3. This mode 
finishes when the current iLr decreases to zero at t2. 

Mode 3 (t2 ≤ t < t3; in Fig. 3(c)): The voltage vAC still 
provides energy to the coupled inductor LPFC1 through the 
diode Db1 and switch S1. The DC bus capacitor CDC supplies 
energy to the inductor Lr, capacitors Cr and Co, and LED tube 
lamp through the switch S1 and diodes D1 and D4. At t3, the 
switch S1 shifts to the off state, and the inductor current 
reaches its peak value; this condition is defined as iLPFC1-pk(t), 
which is given by 

S
PFC

ACrmsAC
pkLPFC DT

L

tfv
ti

1
1

)2sin(2
)(


  ,    (2) 

where D and TS are the duty cycle and switching period of the 
power switch, respectively. 

Mode 4 (t3 ≤ t < t4; in Fig. 3(d)): This mode starts when the 
power switch S1 is in the off state at t3. The utility line voltage 
vAC and coupled inductor LPFC1 supply energy to the 
drain-source capacitor of S1 through the diode Db1. The 
inductor current iLPFC1 linearly decreases from the peak level 
and can be given by 

 3
1

1

)2sin(2
)( tt

L

Vtfv
ti

PFC

DCACrmsAC
LPFC 


  

,  (3) 

where VDC is the voltage of the DC-bus capacitor CDC. 
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(h) 
Fig. 3. Operation modes of the proposed driver during the 
positive half cycle of input voltage vAC. 
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Fig. 4. Theoretical waveforms during the positive half cycle of 
input voltage vAC. 
 
The drain-source capacitor of S2 provides energy to the 
inductor Lr, capacitors Cr and Co, and LED tube lamp through 
the diodes D1 and D4. This mode ends when the drain-source 
voltage vDS2 of S2 decreases to zero at t4. 

Mode 5 (t4 ≤ t < t5; in Fig. 3(e)): This mode starts when the 
voltage vDS2 of S2 decreases to zero and the body diode of 
switch S2 is forward-biased at time t4. The utility line voltage 

 
Fig. 5. Control circuit for the proposed LED tube lamp driver. 

 
vAC and coupled inductor LPFC1 provide energy to CDC through 
the diode Db1 and body diode of switch S2. The inductor Lr 
provides energy to the capacitors Cr and Co and LED tube 
lamp through the diodes D1 and D4. At t5, the inductor current 
iLr decreases to zero, and the mode ends. 

Mode 6 (t5 ≤ t < t6; in Fig. 3(f)): This mode begins when 
the switch S2 achieves ZVS turn-on at t5. The resonant 
inductor Lr provides energy to the capacitors Cr and Co and 
LED tube lamp through S2 and the diodes D1 and D4. At t6, 
the inductor current iLr decreases to zero, and the mode ends. 

Mode 7 (t6 ≤ t < t7; in Fig. 3(g)): During this mode, the 
capacitor Cr provides energy to the inductor Lr, capacitor Co, 
and LED tube lamp through S2 and the diodes D2 and D3. The 
mode ends when the switch S2 shifts to the off state at t7. 

Mode 8 (t7 ≤ t <t8; in Fig. 3(h)): During this mode, the 
resonant capacitor Cr and drain-source capacitor of switch S1 
provide energy to the DC-linked capacitor CDC, drain-source 
capacitor of S2, capacitor Co, and LED tube lamp through the 
diodes D2 and D3. This mode ends when the drain-source 
voltage vDS1 of S1 decreases to zero at t8. Then, Mode 1 begins 
for the next high-frequency switching period.  

Fig. 5 shows the circuit diagram for controlling the 
single-stage LED tube lamp driver. Utilizing a constant 
voltage/current controller (IC1 SEA05) to regulate the output 
voltage and current of the LED lamp, we determine the 
output lamp voltage Vo through the resistors Rvs1, VR1, and 
Rvs2, as well as the output lamp current through the resistor R1. 
The sensed output signal from pin 5 of the IC1 is fed into the 
high-voltage resonant controller (IC3 ST L6599) through a 
photo-coupler (IC2 PC817). Two gate-driving signals vGS1 
and vGS2 are generated from pins 15 and 11 of the IC3, 
respectively, to regulate the output voltage and current of the 
LED tube lamp. 

 

III. DESIGN CONSIDERATIONS FOR KEY 
COMPONENTS OF THE PROPOSED LED DRIVER 

A.  Design of Coupled Inductors LPFC1 and LPFC2 

The design equation for the coupled inductor LPFC1 (LPFC2) is 
expressed as [26] 

2 2

1 22
AC rms

PFC PFC
lamp S

v D
L L

P f

    ,         (4) 
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Fig. 6. Coupled inductors LPFC1 and LPFC2 versus duty cycle D 
under different switching frequencies fS. 

 
where η is the estimated circuit efficiency, Plamp is the rated 
power of the LED lamp, and fS is the switching frequency. 

Fig. 6 shows the coupled inductors LPFC1 and LPFC2 versus 
the duty cycle D under different switching frequencies. With 
η of 0.9, vAC-rms of 110 V and Plamp of 18 W, fS of 50 kHz, and 
D of 0.5, the coupled inductors LPFC1 and LPFC2 are designed 
to be 1.5 mH. 

B.  Design of Series Resonant Tank (Lr and Cr) 

Fig. 7 depicts the equivalent circuit for designing the series 
resonant tank; Ro is the equivalent resistance of the T8-type 
LED tube lamp and can be written as Ro = Vo/Io. As shown in 
Fig. 7, the series resonant tank is composed of a resonant 
inductor Lr in a series connection with a resonant capacitor Cr. 
The resonant frequency fo can be expressed as 

1

2
o

r r

f
L C

 .                (5) 

The design considerations for the series resonant tank Lr 
and Cr are shown in the following.  
(a) The estimated efficiency ηR of the bridge rectifier 
component is expressed as [27] 

2 2

1
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 


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,        (6) 

where VF and RF are the forward voltage drop and equivalent 
resistor of the diodes, respectively, and rC is the equivalent 
resistor of capacitor Co. 
With rC of 50 mΩ, Ro of 200 Ω, VF of 1.5 V, and RF of 0.15 Ω 
(according to the datasheet of the utilized diode), the 
estimated efficiency ηR is given by 

2 2

1
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2 1.5 0.15 0.05
1 ( 1)
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R  
 
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Fig. 7. Equivalent circuit for designing the series resonant tank. 

 
(b) The input resistor Ri of the bridge rectifier is expressed as 

2 2

8 8 200
170.6

0.95
o

i
R
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R

  

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(c) The voltage gain MVR of the bridge rectifier is expressed 
as 

0.95
1.1

2 2 2 2
R

VRM
  

   .          (8) 

(d) The total voltage gain MV of the half-bridge series 
resonant converter with a bridge rectifier is expressed as 

max
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0.17

2 2 2 2 120
o o

V
DC AC
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(e) The voltage gain MVr of the series resonant component is 
expressed as 

V
Vr

VS VR

M
M

M M
 ,            (10) 

where MVS is the voltage gain of the half-bridge converter. 
With MVS of 0.45 (=√2/π), the voltage gain MVr is given as 

0.17
0.3

0.45 1.1VrM  


. 

(f) The loaded quality factor QL is expressed as [27] 

2

2 1I

Vr
L

s o
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f f







,                (11) 

where ηI is the estimated efficiency of the half-bridge series 
resonant converter with a bridge rectifier. 

To obtain the ZVS for the two active switches, the 
switching frequency fS is designed to be larger than the 
resonant frequency fo so that the resonant tank resembles an 
inductive network [27]. 

Therefore, the relationship between switching frequency fS 
and resonant frequency f0 is assumed as 

4s of f .                 (12) 

  With ηI of 0.99 and fs of 50 kHz, the quality factor QL is 
given as 
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2

2

0.99
1
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1

4
4
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

. 

(g) The input resistor R of the half-bridge series resonant 
converter with a bridge rectifier is expressed as 

170.6
172.3

0.99
i

I

R
R


    .           (13) 

(h) The resonant capacitor Cr is expressed as and computed 
with 

1 1
87.9

502 2 0.84 172.34
r

o L

C F
kf Q R


 
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  

.(14)  
In addition, Cr is set to 82 nF. 
(i) The resonant inductor Lr is expressed as and computed 
with 

 22

1 1
1.98

(2 ) 502 824

r
o r

L mH
f C k n 
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 

.(15) 

In addition, Lr is set to 2 mH. 

 

IV. EXPERIMENTAL RESULTS FOR A PROTOTYPE 

DRIVER 

A prototype driver was built and tested for an 18 W-rated 
T8-type LED tube lamp (EVERLIGHT FBW/T8/857/U/4ft), 
the rated voltage and current of which are 60 V and 0.3 A, 
respectively. The components utilized in the LED tube lamp 
driver are shown in Table II.  

Fig. 8 shows the measured inductor currents iLPFC1 and 
iLPFC2. The measured switch voltage vDS2 and inductor current 
iLr are depicted in Fig. 9. The series resonant tank resembles 
an inductive load. Figs. 10 and 11 present the measured 
voltages (vDS1 and vDS2) and currents (iDS1 and iDS2) of the two 
power switches S1 and S2, respectively. ZVS is obviously 
achieved for these power switches, consequently boosting the 
circuit efficiency.   
 Fig. 12 shows the measured output voltage and current 
waveforms; the average values of Vo and Io are 60 V and 0.3 
A, respectively. Table III presents the measured output 
voltage and current of the proposed LED tube lamp driver 
under different input voltages. In addition, the output voltage 
(current) ripple is obtained with the peak-to-peak (pk-pk) 
level divided by the average value of the output voltage 
(current). According to this table, the highest and lowest 
measured output voltage ripples are 7.29% and 5.93%, 
respectively; these ripples occurred at utility line rms voltages 
of 100 and 120 V, respectively. Moreover, the highest and 
lowest measured output current ripples are 9.5% and 8.48%, 
respectively; these ripples occurred at utility line rms voltages 
of 120 and 105 V, respectively. The measured input utility  

TABLE II    
KEY COMPONENTS USED IN THE PROPOSED LED TUBE LAMP 

DRIVER 
Component Value 
Filter Inductor (Lf) 3.3 mH 
Filter Capacitor (Cf) 0.47 μF/250 V 
Power Switches (S1, S2) IRF840 
Coupled Inductors (LPFC1, 
LPFC2) 

1.5 mH 

DC-linked Capacitor 
(CDC) 

220 μF/450 V 

Resonant Inductor (Lr) 2 mH 
Resonant Capacitor (Cr) 82 nF 
Diodes (Db1, Db2) MUR460 
Diodes (D1, D2, D3, D4) C3D10060 
Output Capacitor (Co) 470 μF/63 V ×2 

 

 
Fig. 8. Measured inductor currents iLPFC1 (1 A/div) and iLPFC2 (1 
A/div); time scale: 5 ms/div. 
 

 
Fig. 9. Measured voltage vDS2 (200 V/div) and inductor current 
iLr (0.5 A/div); time scale: 5 μs/div. 
 

 
Fig. 10. Measured voltage vDS1 (200 V/div) and current iDS1 (0.5 
A/div); time scale: 5 μs/div. 
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Fig. 11. Measured voltage vDS2 (200 V/div) and current iDS2 (0.5 
A/div); time scale: 5 μs/div. 

 

 
Fig. 12. Measured output voltage Vo (20 V/div) and current Io 
(0.5 A/div); time scale: 2 ms/div. 
 

TABLE III 
MEASURED OUTPUT VOLTAGE AND CURRENT OF THE PRESENTED 

LED TUBE LAMP DRIVER UNDER DIFFERENT INPUT VOLTAGES 

Input Voltage 100 
V 

105 
V 

110 
V 

115 
V 

120 
V Parameters 

Output Voltage  
(mean) 

60.22 
V  

60.19 
V 

60.07 
V 

60.17 
V 

60.23 
V 

Output Voltage  
(pk-pk) 

4.39 
V 

4.1  
V 

4.14 
V 

3.98 
V 

3.57 
V 

Output Voltage 
Ripple Ratio 

7.29 
% 

6.81 
% 

6.89 
% 

6.61 
% 

5.93 
% 

Output Current  
(mean) 

303.8 
mA 

304.1 
mA

300.1 
mA 

303.8 
mA 

303.7 
mA

Output Current  
(pk-pk) 

26.04 
mA 

25.8 
mA

27.06 
mA 

28.12 
mA 

28.85 
mA

Output Current 
Ripple Ratio 

8.57 
% 

8.48 
% 

9.02 
% 

9.26 
% 

9.5 
% 

 
line voltage and current are shown in Fig. 13. Fig. 14 presents 
the measured current harmonics compared with the IEC 
61000-3-2 Class C standards under input utility line voltages 
ranging from 100 V to 120 V. All the measured current  

 
Fig. 13. Measured input utility line voltage vAC (50 V/div) and 
current iAC (0.5 A/div); time scale: 5 ms/div. 
 

 
Fig. 14. Measured input current harmonics compared with the 
IEC 61000-3-2 Class C standards. 

 

 
Fig. 15. Measured PF and current THD of the proposed LED 
driver under different input utility line voltages. 

 
harmonics meet the requirements. Fig. 15 shows the 
measured power factor (PF) and current total harmonic 
distortion (THD) at input utility line voltages ranging from 
100 V to 120 V. At a utility line rms voltage of 110 V, the 
measured PF and current THD are 0.976 and 7.39%, 
respectively. Fig. 16 shows the measured efficiency of the 
proposed LED tube lamp driver under input utility line 
voltages from 100 V to 120 V. The highest and lowest 
measured efficiency levels are 92.42% and 90.98% at utility 
line rms voltages of 120 and 100 V, respectively. 
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Fig. 17. Designed prototype of the proposed LED tube lamp 
driver. 
 

TABLE IV    
COMPARISON OF EXISTING SINGLE-STAGE T8-TYPE LED TUBE LAMP DRIVERS AND THE PROPOSED DRIVER 

Item 
Existing Driver #1 

[23] 
Existing Driver #2 

[24] 
Existing Driver #3 

[25] 
Proposed Driver 

Circuit Topology Flyback Converter Buck Converter Buck-boost Converter

Integration of a 
dual-boost converter 

with a half-bridge series 
converter 

Input Utility Line 
Voltages 

90–264 V AC 90–264 V AC 85–135 V AC 10–120 V AC 

Output Rated Power 
19 W 

(42 V/0.45 A) 
18.3 W (39 V/0.47 

A) 
20 W 

(85 V/0.235 A) 
18 W 

(60 V/0.3 A) 
Measured 

Maximum Power 
Factor 

0.99 
@ 110 V 

0.96 
@ 110 V 

0.996 
@ 115 V 

0.988 
@ 120 V 

Measured Minimum 
Current THD 

9% 
@ 180 V 

21.54% 
@ 110 V 

4.1% 
@ 115 V 

7.22% 
@ 120 V 

Measured 
Maximum 
Efficiency 

87.8% 
@ 180 V 

88.56% 
@ 180 V 

87.6% 
@ 135 V 

92.42% 
@ 120 V 

  

Fig. 18. Loss breakdown chart of the proposed LED tube lamp 
driver. 

 

Table IV shows a comparison of the performance (including 
maximum PF, minimum current THD, and maximum  

 
efficiency) of the proposed driver and various LED tube lamp 
drivers. The first driver [23] features a flyback converter 
circuit topology, the second driver [24] features a buck 
converter circuit topology, and the third driver [25] features a 
buck-boost converter circuit topology. Two of the AC–DC 
LED drivers ([23] and [24]) operate with universal input 
voltages, whereas the other driver [25] and the proposed 
version operate with American utility line voltages. Table IV 
shows that the proposed single-stage LED tube lamp driver 
achieves ZVS on the power switches to enhance circuit 
efficiency in contrast to the three single-stage drivers. 

Fig. 17 shows a picture of the designed prototype of the 
proposed LED tube lamp driver. Fig. 18 presents the loss 
breakdown chart of the proposed LED tube lamp driver. The 
percentages of the conduction losses of the power switches 
(S1, S2), power diodes (Db1, Db2), and power diodes (D1, D2, 
D3, D4), as well as the other losses are 14.41%, 15.29%, 
60.9%, and 9.4%, respectively. The dominant losses in the 
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proposed driver with a soft-switching feature comprise the 
conduction losses of the power devices (including the power 
switches and power diodes), the percentages of which reach 
90.6% of the total losses. 

 

V. CONCLUSIONS 

This study proposed a single-stage LED tube lamp driver 
with PFC. This driver integrates a dual-boost converter with 
coupled inductors and a half-bridge series resonant converter 
with a bridge rectifier for energy-efficient indoor lighting 
applications. A prototype circuit was successfully built for an 
18 W-rated T8-type LED tube lamp with utility line voltages 
ranging from 100 V to 120 V. The experimental results 
revealed high PF (>0.97), low THD (<8%), and high 
efficiency (>90%), which verify the functionality of the 
proposed LED driver. 
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