References
- Abbas, I.A. (2014a), "Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory", J. Mech. Sci. Technol., 28(10), 4193-4198. https://doi.org/10.1007/s12206-014-0932-6
- Abbas, I.A. (2014b), "Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties", Comput. Math. Appl., 68(12), 2036-2056. https://doi.org/10.1016/j.camwa.2014.09.016
- Abbas, I.A. (2014c), "The effects of relaxation times and moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590.
- Abbas, I.A. (2015a), "A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole", Mech. Based Des. Struct. Mach., 43(4), 501-513. https://doi.org/10.1080/15397734.2015.1029589
- Abbas, I.A. (2015b), "Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source", J. Magnet. Magnet. Mater., 377, 452-459. https://doi.org/10.1016/j.jmmm.2014.10.159
- Abbas, I.A. (2015c), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., Int. J., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103
- Abbas, I.A. and Youssef, H.M. (2015), "Two-dimensional fractional order generalized thermoelastic porous material", Latin Am. J. Solid. Struct., 12(7), 1415-1431. https://doi.org/10.1590/1679-78251584
- Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046
- Abbas, I.A. and Zenkour, A.M. (2014), "Dual-ohase-lag model on thermoelastic interactions in a semiinfinite medium subjected to a ramp-type heating", J. Computat. Theor. Nanosci., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407
- Agarwal, V.K. (1978), "On surface waves in generalized thermoelasticity", J. Elast., 8(2), 171-177. https://doi.org/10.1007/BF00052480
- Agarwal, V.K. (1979a), "On electromagneto-thermoelastic plane waves", Acta Mechanica, 34(3-4), 181-191. https://doi.org/10.1007/BF01227983
- Agarwal, V.K. (1979b), "On plane waves in generalized thermoelasticity", Acta Mechanica, 31(3-4), 185-198. https://doi.org/10.1007/BF01176847
- Al-Qahtani, H.M. and Datta, S.K. (2008), "Laser-generated thermoelastic waves in an anisotropic infinite plate: Exact analysis", J. Therm. Stress., 31(6), 569-583. https://doi.org/10.1080/01495730801978380
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Ind. J. Pure Appl. Math., 28(12), 1573-1594.
- Deresiewicz, H. (1975), "Thermal coupling of waves in a plate", Acta Mechanica, 21(4), 329-342. https://doi.org/10.1007/BF01303074
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828
- Ezzat, M.A. (2011), "Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer", Physica B: Condensed Matter, 406(1), 30-35. https://doi.org/10.1016/j.physb.2010.10.005
- Ezzat, M. and Awad, E. (2010), "Analytical aspects in the theory of thermoelastic bodies with microstructure and two temperatures", J. Therm. Stress., 33(7), 674-693. https://doi.org/10.1080/01495731003776069
- Ezzat, M.A. and El-Karamany, A.S. (2003), "The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity", Int. J. Eng. Sci., 41(19), 2281-2298. https://doi.org/10.1016/S0020-7225(03)00108-3
- Ezzat, M.A. and Youssef, H.M. (2005), "Generalized magneto-thermoelasticity in a perfectly conducting medium", Int. J. Solid. Struct., 42(24-25), 6319-6334. https://doi.org/10.1016/j.ijsolstr.2005.03.065
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elastic., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Isavand, S., Shakeri, B.M. and Mohandesi, J.A. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel Compos. Struct., Int. J., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001
- Kakar, S. and Kakar, R. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., Int. J., 7(1), 1-36. https://doi.org/10.12989/gae.2014.7.1.001
- Kumar, R. and Rupender (2010), "The effect of rotation in a magneto-micropolar thermoelastic layer with one relaxation time", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 661-673. https://doi.org/10.1243/09544062JMES1725
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mallik, S.H. and Kanoria, M. (2008), "A two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source", Euro. J. Mech., A/Solids, 27(4), 607-621. https://doi.org/10.1016/j.euromechsol.2007.09.002
- Othman, M.I.A. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4
- Othman, M.I. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermomicrostretch elastic solid: Comparison of different theories using finite element method", Can. J. Phys., 92(10), 1269-1277. https://doi.org/10.1139/cjp-2013-0482
- Saadatfar, M. and Aghaie-Khafri, M. (2015), "Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder", Smart Struct. Syst., Int. J., 15(6), 1411-1437. https://doi.org/10.12989/sss.2015.15.6.1411
- Verma, K. and Hasebe, N. (1999), "On the propagation of generalized thermoelastic vibrations in plates", Eng. Transact., 47(3), 300-319.
- Zenkour, A.M. and Abbas, I.A. (2015a), "Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation", J. Magnet. Magnet. Mater., 395, 123-129. https://doi.org/10.1016/j.jmmm.2015.07.038
- Zenkour, A.M. and Abouelregal, A.E. (2015b), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
Cited by
- A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole vol.133, pp.1, 2018, https://doi.org/10.1140/epjp/i2018-11814-6
- Fractional order photo-thermo-elastic waves in a two-dimensional semiconductor plate vol.133, pp.6, 2018, https://doi.org/10.1140/epjp/i2018-12054-6
- Two-temperature generalized thermoelasticity with fractional order strain of an infinite body with a spherical cavity vol.18, pp.4, 2016, https://doi.org/10.3233/jcm-180852
- Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
- Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux vol.23, pp.3, 2016, https://doi.org/10.12989/gae.2020.23.3.217
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.523
- A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2016, https://doi.org/10.12989/sem.2021.79.1.001
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2016, https://doi.org/10.12989/scs.2021.40.4.511