DOI QR코드

DOI QR Code

Sensing Model for Reducing Power Consumption for Indoor/Outdoor Context Transition

실내/실외 컨텍스트 전이를 고려한 저전력 센싱 모델

  • Received : 2015.12.09
  • Accepted : 2016.04.27
  • Published : 2016.07.15

Abstract

With the spread of smartphones containing multiple on-board sensors, the market for context aware applications have grown. However, due to the limited power capacity of a smartphone, users feel discontented QoS. Additionally, context aware applications require the utilization of many forms of context and sensing information. If context transition has occurred, types of needed sensors must be changed and each sensor modules need to turn on/off. In addition, excessive sensing has been found when the context decision is ambiguous. In this paper, we focus on power consumption associated with the context transition that occurs during indoor/outdoor detection, modeling the activities of the sensor associated with these contexts. And we suggest a freezing algorithm that reduces power consumption in context transition. We experiment with a commercial application that service is indoor/outdoor location tracking, measure power consumption in context transition with and without the utilization of the proposed method. We find that proposed method reduces power consumption about 20% during context transition.

다양한 센서가 부착된 스마트 폰의 보급으로 상황인지 어플리케이션 시장의 규모가 발달하고 있다. 하지만, 한정된 전력으로 인해 원활한 서비스를 제공받기는 어렵다. 상황인지 어플리케이션 관점에서 볼 때, 컨텍스트의 종류에 따라 필요한 센싱 정보가 다르기 때문에, 컨텍스트의 전이가 발생하면 필요한 센서들의 변화로 인해 센서 모듈들을 끄고 켜는 과정에서의 전력 소비가 크며, 정확한 센싱이 되지 않는 상황에서 과도한 센싱을 시도하게된다. 본 논문에서는 실내/실외 컨텍스트 전이에서 발생하는 전력 소모에 초점을 두고 해당 컨텍스트와 연관된 센서 활동을 모델링 한 뒤, 컨텍스트 전이가 일어나는 시점을 감지하여 전력 소모를 최소화할 수 있는 freezing 알고리즘을 적용하는 기법을 제안한다. 시중의 실내/실외 위치추적 어플리케이션을 이용하여 컨텍스트 전이가 발생하는 지점에서, 제안하는 기법의 유무에 따른 소비 전력 차이를 실측하였으며, 시중의 어플리케이션의 실제 구동 중 컨텍스트 전이과정에서의 전력 절감이 있었으며, 전체 시나리오에서 약 20%의 전력 절감 효과를 얻었다.

Keywords

Acknowledgement

Supported by : 정보통신기술진흥센터, 한국연구재단

References

  1. H. J. Kim, J. M. Yoo, C. W. Park, A. Y. Kim, J. W. Lee, "Trends of Mobile App. Analytics Plaform," Electronics and Telecommunications Trends, Vol. 29, No. 1, pp. 50-60, 2014. (in Korean)
  2. P. Georgiev, N. D. Lane, K. K. Rachuri, C. Mascolo, "DSP.ear: Leveraging Co-Processor Support for Continuous Audio Sensing on Smartphones," Sensys '14 Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 295-309, 2014.
  3. H. Shen, A. Balasubramanian, A. LaMarca, D. Wetherall, "Enhancing Mobile Apps To Use Sensor Hubs Without Programmer Effort," Proc. of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '15), pp. 227-238, 2015.
  4. Y. Liu, C. Xu, S. C. Cheung, "Where has my battery gone? Finding sensor related energy black holes in smartphone applications," 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 2-10, 2013.
  5. D. Li, A. H. Tran, W. G. J. Halfond, "Making web applications more energy efficient for OLED smartphones," Proc. of the 36th International Conference on Software Engineering (ICSE 2014), pp. 527-538, 2014.
  6. I. Manotas, L.Pollock, J. Clause, "SEEDS: a software engineer's energy-optimization decision support framework," Proc. of the 36th International Conference on Software Engineering (ICSE 2014), pp. 503-514, 2014.
  7. S. Park, D. Kim, H. Cha, "Reducing Energy Consumption of Alarm-induced Wake-ups on Android Smartphones," Proc. of the 16th International Workshop on Mobile Computing Systems and Applications (HotMobile '15), pp. 33-38, 2015.
  8. L. Xhang, P. H. Pathak, M. Wu, Y. Zhao, P. Mogapatra, "AccelWord: Energy Efficient Hotword Detection through Accelerometer," Proc. of the 13th Annual International Conference on Mobile Systems, Applications, and Services(MobiSys '15), pp. 301-315, 2015.
  9. S. He, Y. Liu, H. Zhou, "Optimizing Smartphone Power Consumption through Dynamic Resolution Scaling," Proc. of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom '15), pp. 27-39, 2015
  10. G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles, "Towards a Better Understanding of Context and Context-Awareness," Proc. of the 1st international symposium on Handheld and Ubiquitous Computing(HUC '99), pp. 304-307, 1999.
  11. C. Perera, A. Xaslavsky, P. Christen, D. Georgakopoulos, "Context Aware Computing for The Internet of Things: A Survey," Communications Surveys & Tutorials, IEEE, Vol. 16, Issue. 1, pp. 414-454, 2013.
  12. P. Zhou, et al., "IODetector: a generic service for indoor outdoor detection," Proc. of 10th acm conference on embedded network sensor systems, pp. 113-126, 2012.
  13. R. Valentin, P. Katsikouli, R. Sarkar, M. K. Marina, "A Semi-Supervised Learning Approach for Robust Indoor-Outdoor Detection with Smartphones," Proc. of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 280-294, 2014.
  14. O. Canovas, et al., "WiFiBoost: a terminal-based method for detection of indoor/outdoor places," Proc. of the 11th International Conference on Mobile and Ubiquitous Systems: Computin, Networking and Services, 2014.
  15. J. Cheon, "Development of Testing of BMT Model for Evaluating Power Consumption of Mobile Context-Aware Application," Master's Thesis, Ajou University, Suwon, Republic of Korea, 2015.
  16. K. Choi, J. Lee, "Portable Power Measurement System for Mobile Devices," Journal of KIISE : Computing Practices and Letters, Vol. 20, No. 3, pp. 131-142, 2014 (in Korean)
  17. (2015, Nov. 30) GeoLog, [Online]. Available: https://play.google.com/store/apps/details?id=eu.chainfire.geolog (downloaded 2015, Nov. 8)
  18. (2015. Nov. 30) Android Open Source Project, [Online]. Available: https://source.android.com/