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Abstract: This paper describes an automatic vowel sequence reproduction system for a talking 
robot built to reproduce the human voice based on the working behavior of the human articulatory 
system. A sound analysis system is developed to record a sentence spoken by a human (mainly 
vowel sequences in the Japanese language) and to then analyze that sentence to give the correct 
command packet so the talking robot can repeat it. An algorithm based on a short-time energy 
method is developed to separate and count sound phonemes. A matching template using partial 
correlation coefficients (PARCOR) is applied to detect a voice in the talking robot’s database 
similar to the spoken voice. Combining the sound separation and counting the result with the 
detection of vowels in human speech, the talking robot can reproduce a vowel sequence similar to 
the one spoken by the human. Two tests to verify the working behavior of the robot are performed. 
The results of the tests indicate that the robot can repeat a sequence of vowels spoken by a human 
with an average success rate of more than 60%.     
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1. Introduction 

Speech is the main and most effective communication 
method in human society. Speech synthesis systems have 
drawn the attention of many researchers for a long time. 
There are two main approaches to speech synthesis: 
software-based and hardware-based systems. Software-
based systems were introduced by Guenther et al. [1] (the 
DIVA model) and Bernd et al. [2] (the ACT model). A 
hardware-based system is building a mechanical system 
that can reproduce sound in a way similar to the way the 
human articulatory system works [5]. The talking robot is 
one of these hardware-based systems.  

The main purpose of this research is to develop an 
autonomous vowel sequence reproduction system for a 
talking robot. In the second section, mechanical 
configuration of the talking robot is introduced. The third 
section briefly describes the learning process for the 
talking robot using a Kohonen self-organizing map (SOM) 
technique. The fourth and main section describes the 
technique for analyzing human spoken sound and for 

separating the human sound signal into a set of single 
phonemes. Then, each phoneme is matched against a 
template based on PARCOR coefficient vowels for vowel 
determination. After that, the sequence of vowel sounds is 
outputted from the talking robot.  

When recording and analyzing human speech, a phrase 
is divided into a sequence of two different parts: 
consonants and vowels. A sample phrase, /konichiwa/, 
spoken by an adult male is shown in Fig. 1. As can be seen, 
the consonants /k/, /n/, /ch/, and /w/ take about the first 
50ms of each phoneme’s waveform, and the rest of each 
phoneme waveform are the vowels, /o/, /i/, and /a/. The 
talking robot is trained to reproduce the Japanese language, 
which has five basic vowels and 10 basic consonants. It is 
difficult to detect the consonant phonemes due to 
instability and short occurrence times. Therefore, only a 
technique to analyze a sequence of vowels spoken by a 
human is presented.  
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2. Mechanical Construction of the Talking 
Robot 

The talking robot consists of an air pump, an artificial 
vocal cord, a resonance tube, an artificial nasal cavity, 
and a microphone connected to a sound analyzer, which 
respectively represent the lungs, the vocal cords, the 
vocal tract, the nasal cavity, and auditory feedback of a 
human. An overview of the talking robot structure is 
shown in Fig. 2. 

The air compressor provides airflow for the talking 
robot. The airflow is directed to the vocal cords via 
pressure control valve and two airflow control valves, 
which work as the controller for the volume of both voiced 
and unvoiced sounds. The resonance tube functions like a 
vocal tract attached to the vocal cords to manipulate 
resonance characteristics. The nasal cavity is connected to 
the resonance tube with a rotary valve. The microphone 
and amplifier play the role of an auditory feedback system. 
The relationships between voice characteristics and motor 
control commands are stored in the system controller, 
which is referred to for generation of speech articulatory 
motion. 

The characteristics of a glottal wave, which determines 
the pitch and the volume of the human voice, is governed 
by the complex behavior of the vocal cords, which is the 
oscillatory mechanism of the human organs (the mucous 
membrane and muscles) excited by airflow from the lungs. 

The vibration of a thin 5mm wide rubber band attached 
to a plastic body creates an artificial vocal sound source 
[3]. The relationship between tensile force and the 
fundamental frequency of a vocal sound generated by the 
artificial vocal cord was measured. The fundamental 
frequency varied from 110Hz to 350Hz, depending on the 
pressure applied to the rubber band. The artificial vocal 
cords are considered suitable for the system not only 
because of the simple structure, but the frequency 
characteristics can also be easily regulated by changing the 
tension of the rubber and the amount of airflow to the 
vocal cords. 

3. Robot Control System and SOM 
Learning  

3.1 Motor Control System of the Talking 
Robot  

As shown in Fig. 3, 12 motors control the shape of the 
vocal tract, the tongue motion, and the amount of air intake 
to the vocal tract and nasal cavity of the talking robot. 
Command-type servomotors (Futaba) are employed to 
drive the mechanisms of this robot. The advantages of the 
command type motor are high speed, stability, accuracy, 
durability, and having a built-in feedback signal. In 
addition, multiple motors can be controlled simultaneously, 
with only one RS-485 serial port. It requires a long 
command line input to drive the motors through the RS-
485 communications protocol. The general structure for 
sending a packet to control multiple motors is shown 
below. 

Header (4-byte) – ID – Flag – Address – Length – 
Count– Servo ID– Data (4 bytes) – Servo ID– Data – …– 
Sum* 

*Sum is the XOR logic operation of all previous bytes 
(Header -> last Data) 

Example: The command to rotate both servo motor ID 
1 and servo motor ID 2 by 10 degrees, and to rotate servo 
ID 5 by 50 degrees is  

AFFA – 00 – 00 – 1E – 03 – 03– 01– 64 00 – 02 – 64 
00 – 05 – F401 – ED 

By actuating displacement forces with stainless bars 
from the outside, the cross-sectional area of the tube is 
manipulated so that the resonance characteristics are 
changed according to the transformations of the inner areas 
of the resonator. Motors are placed in eight positions, from 
the glottis to the lips, and the displacement forces are 
applied according to the control command packet from the 
computer. A nasal cavity is attached above the resonance 
tube to simulate human-like nasal sounds. A rotational 
valve controlled by another motor is placed between the 
resonance tube and the nasal cavity for the selection of 
nasal and normal sounds. For the generation of nasal 
sounds /n/ and /m/, the rotational valve is open to allow air 
into the nasal cavity. By closing the middle position of the 
vocal tract and then releasing the air to create the vowel 
sounds, the /n/ consonant is generated. For the /m/ 
consonant, the outlet part is closed to stop the air first, and 
then is opened to vocalize the vowels. The difference in /n/ 

Fig. 1. /ko-ni-chi-wa/ sound wave. 
 

 

Fig. 2. Overview of the talking robot. 
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and /m/ consonant generation is basically the narrowing 
positions of the vocal tract. In generating plosive sounds, 
such as /p/, /b/ and /t/, the mechanical system closes the 
rotational valve to not release the air in the nasal cavity. 
By closing one point of the vocal tract, air provided from 
the lung is stopped and compressed in the tract. Then, the 
released air generates plosive consonant sounds like /p/ 
and /t/. The robot also has a silicone-molded tongue, which 
is made by referring to the shape and size of a human 
tongue. A string is attached to the tongue, and at the other 
end of the string, a servo motor is connected for 
manipulation of the up-down motion to vocalize the /l/ 
sound. 

3.2 SOM-Learning of the Talking Robot 
In our previous studies, a neural network (NN) was 

employed to autonomously associate vocal tract shapes 
with generated vocal sounds [5, 6]. In the learning process, 
the network learns the motor control commands by 
inputting resonance characteristics as teaching signals. By 
combining a 3D self-organizing map (3D-SOM) with a 
neural network (NN), a dual three-dimensional self-
organizing neural network (dual 3D-SONN) was employed. 
The 3D-SONN was able to choose cells on the map and 
autonomously recreate voice articulations. The 3D-SONN 
has a three-dimensional mapping space, which allows the 
characteristics to be located three-dimensionally, 
decreasing the probability of miss locations if using a 2D-

SONN. 
On the 3D-SONN, the inputs are vectors of nine 

elements, which are nine coefficients extracted from vocal 
sound using Mel-frequency Cepstral coefficient (MFCC) 
analysis, and the weighting vectors, im , are initialized 
with small random values. A Gaussian function, which is 
initialized to a large value, is employed for learning the 
three-dimensional SONN. Steps for learning are presented 
below. 1  

1. The cell that has the minimum Euclidean distance 
with ix , is selected via Eq. (1) on the 3D feature 
map. 

 
 *t i ic arg min m x= −  (1) 

2. The neighborhoods of the selected cells are 
calculated with Eqs. (2) and (3). 
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The learning proceeds until all the phonetic 

characteristics are distributed properly on the feature map 
by repeating procedures 1 and 2, and the topological 
relations among different features are autonomously 
created. The association between vowels and consonants 
and the motor parameter vectors is established. This is the 
basic set to reconstruct the human voice, and could be used 
for a text-to-speech function for the talking robot. In this 
study, only the set of motor parameter vectors for vowels 
in the robot database were used for vowel sequence 
reproduction.   

4. Sequence of Vowel Regeneration 

As mentioned in Section 3.2, the motor parameter 
vector set of five vowels is used to output the command for 
the talking robot in order to regenerate the respective 
vowels detected by PARCOR coefficient analysis. The 
flow chart of the vowel sequence reproduction program is 
shown in Fig. 4. There are eight steps in total. In the robot 
initialization step, all robot articulatory motors are set to 

Fig. 3. System configuration. 

 

 

Fig. 4. System configuration. 
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the original position; the details on the other steps are 
explained in the next sections. 

4.1 Sound Recording Using Matlab 
The control interface of the talking robot was built 

using the Matlab graphical user interface (GUI) to record 
and display human sound, and the talking robot reproduced 
the sound. The sound was recorded at a sampling rate of 
8000Hz—a single channel using built-in Matlab 
commands—and the sound wave data were then saved in 
the Matlab workspace for further analysis.  

4.2 Analysis of the Recorded Voice 
In order to separate phonemes in speech, first, the 

short-time energy (STE) of the voice is calculated based on 
Eq. (4).  

 

 ( ) ( ) 2
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⎡ ⎤= −⎣ ⎦∑                    (4) 

 
In Eq. (4), nE is the short-time energy, ( ) x m  is the 

signal value at m, n is the window duration, n = 0, 1T, 2T, 
…, T is the frame-shift (100 samples), N is the window 
size (101 samples), and ()w  is the window function 
(Hamming). 
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Then, the STE is compared to a constant,  th∅ , which 

is equal to the maximum value of the STE divided by 10. 
This constant,   th∅ , is called the threshold number, as 
described in Eq. (5).  

Several experiments to investigate the effect of the 

threshold number’s value have been done. For vowel 
separation, the value of threshold number  th∅ , equal to 
the maximum value of the calculated short-time energy 
divided by 10, is sufficient to separate the phonemes in 
human speech. The phoneme separation step is used to 
separate each individual phoneme and detect how many 
phonemes there are in a segment of speech. The separation 
is done by first comparing each element in the data ( ), E m , 
with the threshold number,  th∅ ; if it is greater than 
threshold number th∅ , the value of that element is kept; 
otherwise, its value is replaced with zero (3). After that, 
the number of phonemes is counted, and the phonemes are 
separated by using a tracing technique. The algorithm 
traces data ( )E m  from left to right, and determines the 
number of phonemes in the speech segment, based on the 
number of times the data changes from a zero value to a 
non-zero value. One phoneme segment is the range of 
( )E m  that has a non-zero value. Noise cancellation is also 

implemented in the system; if the length of the segment is 
too short, it is noise, so the system ignores that segment. 
The separated phonemes are saved to the Matlab 
workspace for PARCOR coefficient analysis.  

As a result, the number of phonemes and a new 
phoneme for each sound segment are obtained in the 
Matlab workspace. This information is used as part of the 
input data for the talking robot to regenerate a sequence of 
vowels spoken by the human. Fig. 5 shows an example of 
this sound analysis technique. 

4.3 PARCOR coefficients analysis for 
phoneme recognition 

Previously, a set of human vowels /a/, /i/, /u/, /e/, and 
/o/ was recorded. This set was used to make the PARCOR 
coefficients template for vowel recognition based on a 
matching technique. A PARCOR coefficient is defined as 
a correlation coefficient between forward and backward 
prediction errors in the autoregressive model of order n-1 
[7]. PARCOR coefficients  nk of a waveform sample [xt, 

 

Fig. 5. Phoneme segment separation steps (a) Human recorded sound, (b) short-time energy calculation, (c) 
threshold comparison, (d) phoneme separation.  
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xt-1,…, xt-n] with a forward prediction error of ( )1n
fte − ,  and 

a backward prediction error of ( )1n
bte − is described in Eq. (7). 

In Eq. (7),  nk  is the PARCOR coefficient of order n, fe  
is the forward prediction error signal,  be  is the backward 
prediction error signal, and m is the PARCOR order. In 
this study, the 10th order of PARCOR coefficients is 
applied. 
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To obtain nk  directly from waveform  tx , the signal is 

first transformed to the z-domain. 
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We have the following relations: 
 

 ( ) ( ) ( )1 1n n n nA z A z k B z− −= −              (14) 
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The boundary conditions are ( ) ( ) 1

0 01,  zA z B z −= = . 
The Levinson-Durbin recursive algorithm [8] is applied to 
solve the PARCOR coefficients. The human PARCOR 
coefficients are calculated and plotted in Fig. 6. The x-axis 
shows the orders of the PARCOR coefficients, and the y-
axis shows the values of each sound parameter. This set 
was used as the standard PARCOR template to compare 

with new human recorded sound. 
Human PARCOR coefficients are usually calculated on 

a small segment of a signal, which ranges within about 
50ms of the waveform [3]. There were 10 recorded signals 
for each vowel spoken beforehand by an adult male. The 
center segment of each signal length of 50ms was taken to 
perform PARCOR coefficient analysis. The average value 
of 10 PARCOR coefficients for each vowel was calculated 
and saved in the robot database as the standard set. The 
average value of these PARCOR coefficients is plotted in 
Fig. 6. PARCOR coefficient analysis is suitable for 
recognizing vowels, because a vowel is usually a stable 
signal. However, a consonant is an unstable signal, and 
only lasts for about the first 50ms of an utterance; thus, it 
is difficult to determine its PARCOR coefficient correctly. 
Hence, the phonemes after separation shown in Fig. 5(d) 
are calculated for PARCOR coefficients using only 50ms 
of the middle segment of the waveform.  

The calculated PARCOR coefficients from each 
phoneme segment are then compared with the standard set 
of PARCOR coefficients in the robot database, and the 
motor command output for each phoneme segment is 
determined. A template-matching method was employed to 
identify the vowel for each phoneme segment. Euclidean 
distances between the templates and a new phoneme were 
obtained. The minimum Euclidean distances between the 
recordings indicated the vowel sound for that recorded 
segment.  

4.4 Talking Robot Sound Reproduction 
and Display 

To visualize and evaluate the performance of the 
control system, a display interface using Matlab’s GUI is 
shown in Fig. 7. The interface has a button to initialize the 
robot motors to their original positions. It also has buttons 
for testing robot sound quality, so the user can adjust the 
parameters for adequate sound output. After motor 
commands for each separated phoneme segment are 
determined, it is sent to the robot’s motors. Then, the 
robot’s motors move to regenerate a sequence of vowels 
spoken by the human. The spoken voice from the robot is 
recorded by the microphone and displayed on a computer 
screen. The display interface was built using the Matlab 
GUI in Fig. 7. 

Fig. 7. Robot output sound display. 
 

Fig. 6. Human PARCOR coefficients. 
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5. Testing and Analysis  

Eight people (seven males and one female) were 
subjects for testing. Among them were four Japanese and 
four foreigners (French, Chinese, and Vietnamese). When 
they clicked the “Repeat” button on the GUI, their sounds 
were recorded and analyzed, and then the talking robot 
automatically reproduced the sounds.  

The subjects were asked to say five Japanese vowels 
(/a/, /i/, /u/, /e/, /o/) in two separate tests. In the first test, 
they were asked to say only one vowel at a time and wait 
for the robot to repeat the vowel. They were asked to utter 
each vowel five times in a random order of their choice in 
this test. The total number of samples for this test was 25. 
The average percentage of correct vowel reproduction by 
the robot was then calculated.  This value was defined as 
the “corrected hits” of the robot, as shown in the y-axis of 
Fig. 8. 

For the second test, the subjects were asked to utter 
five vowels at a time, for five times, in a random order of 
their choice, with a short pause between each vowel. For 
this test, the percentage of correct vowel reproduction by 
the robot for each trial was calculated. For example, if the 
robot repeated four out of five vowels in a trial, it would be 
counted as 80% correct hits for that trial. Then, the average 
percentage for correct vowel reproduction by the robot for 
all trials was calculated. The results for average correct 
hits from both tests are plotted in Fig. 8. 

6. Conclusion 

Based on the results in Section 5, the robot had above 
90% for the success rate in repeating one vowel from the 
Japanese speaking voices and above 80% for the foreign 
voices. In the second test of a random order vowel-
sequence reproduction, the talking robot could repeat the 
sequence of vowels with a success rate above 70% for the 
Japanese speaking voices and above 60% for foreign 
speaking voices. It could be this resulted from the set of 
vowels in the robot database being built from Japanese 
voices, and thus, the rate for recognizing the Japanese 
voice would be higher than with a foreigner’s voice. 

Besides, the similarity in characteristics of vowels /i/ & /e/ 
and /u/ & /o/ made it slightly difficult for the robot to 
distinguish between these vowels.  

In conclusion, the authors built a talking robot to 
automatically repeat a sequence of vowels from human 
speech segments. The tests showed that the system worked 
well for one vowel repeated, but it still needs some 
improvement in reproducing a random sequence of vowels. 
Future plans include increasing the recognition precision 
of the system by automatically updating the PARCOR 
coefficients in the database with any new recorded voice; 
this would reduce the risk of misrecognition from new 
people with a different voice.  
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