DOI QR코드

DOI QR Code

Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number

  • Yoo, Si-Hyun (Motion Innovation Center, Korea National Sport University) ;
  • Kim, Jong-Bin (Motion Innovation Center, Korea National Sport University) ;
  • Ryu, Ji-Seon (Motion Innovation Center, Korea National Sport University) ;
  • Yoon, Suk-Hoon (Motion Innovation Center, Korea National Sport University) ;
  • Park, Sang-Kyoon (Motion Innovation Center, Korea National Sport University)
  • Received : 2016.05.08
  • Accepted : 2016.07.05
  • Published : 2016.06.30

Abstract

Objective: The purpose of this study was to investigate differences in gait parameters and symmetry between walking speed by using the Froude number and preferred walking speed. Method: Fifty adults (age: $21.0{\pm}1.7years$, body weight: $71.0{\pm}9.2kg$, height: $1.75{\pm}0.07m$, leg length: $0.89{\pm}0.05m$) participated in this study. Leg length-applied walking speed was calculated by using the Froude number, defined as Fr = ${\upsilon}^2$/gL, where v is the velocity, g is the gravitational acceleration, and L is the leg length. Video data were collected by using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden), with a 200-Hz sampling frequency during two-speed walking (preferred walking speed [PS] and leg length-applied walking speed [LS]) on a treadmill (Instrumented Treadmill, Bertec, USA). The step length, stride length, support percentage, cadence, lower joint angle, range of motion (ROM), and symmetry index were then calculated by using the Matlab R2009a software. Results: Step and stride lengths were greater in LS than in PS (p < 0.05). The right single-support percentage was greater in LS than in PS (p < 0.05). The hip joint angle at heel contact and toe-off were greater in LS than in PS (p < 0.05). The hip and knee joint ROM were greater in LS than in PS (p < 0.05). Conclusion: Based on our findings, we suggest that increased walking speed had a significant effect on step length, stride length, support percentage, and lower joint ROM.

Keywords

References

  1. Alexander, R. M., & Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 201(1), 135-152. https://doi.org/10.1111/j.1469-7998.1983.tb04266.x
  2. Choi, J. S., Kang, D. W., Mun, K. R., Bang, Y. H. & Tack, G. R. (2010). Comparison of kinematic factors between old and young people during walking on level and uneven inclined surfaces. Korean Journal of Sport Biomechanics, 20(1), 33-39. https://doi.org/10.5103/KJSB.2010.20.1.033
  3. Choi, J. S., Kang, D. W. & Tack, G. R. (2011). A preliminary study on personal preferred walking speed. Journal of Sport and Leisure Studies, 45(2), 721-728.
  4. Crowinshield, R. D., Brand, R. A. & Johnston, R. C. (1978). The effects of walking velocity and age and hip kinematics and kinetics. Clinical Orthopaedics and Related Research, 132, 140-144.
  5. Echeverria, J. C., Rodriguez, E., Velascol, A. & Alvarez-Ramirez, J. (2010). Limb dominance changes in walking evolution explored by asymmetric correlation in gait dynamics. Physica A: Statistical Mechanics and its Applications, 389(8), 1625-1634. https://doi.org/10.1016/j.physa.2009.12.025
  6. England, S. A. & Granata, K. P. (2007). The influence of gait speed on local dynamic stability of walking. Gait & Posture, 25(2), 172-178. https://doi.org/10.1016/j.gaitpost.2006.03.003
  7. Hof, A. L. (1996). Scaling gait data to body size. Gait & Posture, 4(3), 222-223. https://doi.org/10.1016/0966-6362(95)01057-2
  8. Hyun, S. H. & Ryew, C. C. (2014). Analysis of the gait characteristics and interaction among bilateral lower extremity joints according to shoe's heel heights in young woman. Korean Journal of Sport Biomechanics, 24(4), 445-453. https://doi.org/10.5103/KJSB.2014.24.4.445
  9. Kim, G. & Yoon, N. M. (2009). Gait analysis of the normal adult. The Journal Korean Society of Physical Therapy, 21(2), 87-95.
  10. Kim, R. B., Lee, S. C. & Jin, Y. W. (2000). Influence of walking speed on kinetics of joints lower limbs. The Korean Journal of Physical Education, 39(4), 675-687.
  11. Lee, H. J. & Cho, K. J. (2015). Effects of treadmill gait exercise providing real-time biofeedback on gait coordination and asymmetry. The Korea Journal of Sports Science, 24(5), 1773-1783.
  12. Lee, H. S. (2014). Effect of dimensionless number about joint moment of low legs and analysis of gait pattern by gender. The Korean Journal of Physical Education, 53(6), 515-529.
  13. Lugade, V., Wu, A., Jewett, B., Collis, D. & Chou, L. S. (2010). Gait asymmetry following and anterior and anterolateral approach to total hip arthroplasty. Clinical Biomechanics, 25(7), 675-680. https://doi.org/10.1016/j.clinbiomech.2010.05.003
  14. Moon, G., S. (2005). The kinematic analysis of the ankle joint and EMG analysis of the lower limbs muscle for the different walking speed. Korean Journal of Sport Biomechanics, 15(1), 177-195. https://doi.org/10.5103/KJSB.2005.15.1.177
  15. Moon, G. S., Park, S. H., Shin, S. A., Chung, J. W. & Lee, H. D. (2012). The kinetic analysis for the walking movement of fashion model and normal women. Journal of Sport and Leisure Studies, 29(2), 851-860.
  16. Murray, M. P. (1967). Gait as a total pattern of movement. American Journal of Physical Medicine, 46(1), 290-333.
  17. Nam, H. C., Kim, S. Y. & An, S. H. (2010). The relationships among gait asymmetry, the gait velocity and motor function of lower extremity in stroke patients. Journal of the Korean Society of Physical Medicine, 5(3), 385-394.
  18. Newton, R. U., Gerber, A., Nimphius, S., Shim, J. K., Doan, B., Robertson, M., Pearson, D. R., Craig, W., Hakkinen, K. & Kraemer, W. J. (2006). Determination of functional strength imbalance of the lower extremities. Journal of Strength and Conditional Research, 20(4), 971-977.
  19. Nigg, B. M., De Boer, R. W. & Fisher, V. (1995). A kinematic comparison of overground and traedmill running. Medicine and Science in Sports and Exercise, 27(1), 98-105.
  20. Patterson, K. K., Parafianowicz, I., Danells, C. J., Closson, V., Verrier, M. C., Staines, W. R., Black, S. E. & McIlroy, W. E. (2008). Gait asymmetry in community-ambulating stroke survivors. Archives of Physical Medicine and Rehabilitation, 89(2), 304-310. https://doi.org/10.1016/j.apmr.2007.08.142
  21. Perttunen, J. R., Anttila, E., Sodergard, J., Merikanto, J. & Komi, P. V. (2004). Gait asymmetry in patients with limb length discrepancy. Scandinavian Journal of Medicine & Science in Sports, 14(1), 49-56. https://doi.org/10.1111/j.1600-0838.2003.00307.x
  22. Perry, J. (1992). Gait analysis: Normal and pathological function. Thorofare, NJ: SLACK.
  23. Roth, E. J., Mervitz, C., Mroczek, K., Dugan, S. A. & Suh, W. W. (1997). Hemiplegic gait. Relationships between walking speed and other temporal parameter. American Journal of Physical Medicine & Rehabilitation, 76(2), 128-133. https://doi.org/10.1097/00002060-199703000-00008
  24. Sadeghi, H., Allard, P., Prince, F. & Labelle, H. (2000). Symmetry and limb dominance in able-bodied gait: a review. Gait and Posture, 12(1), 34-45. https://doi.org/10.1016/S0966-6362(00)00070-9
  25. Scott, S. H. & Winter, D. A. (1990). Internal forces at chronic running injury sites. Medicine and Science in Sports and Exercise, 22(3), 357-369.
  26. Shin, S. H., Lee, H. K. & Kwon, M. S. (2008). Correlation between lower extremities joint moment and joint angle according to the different walking speeds. Korean Journal of Sport Biomechanics, 18(2), 75-83. https://doi.org/10.5103/KJSB.2008.18.2.075
  27. Skinner, H. B. & Barrack, R. L. (1990). Ankle weighting effects of therapeutic exercise on the balance and gait in older adults. Archives of Physical Medicine and Rehabilitation, 71(1), 112-115.
  28. Soong, G. P., Lovie-Kitchin, J. E. & Brown, B. (2000). Preferred walking speed for assessment of mobility performance: sighted guide versus non-sighted guide techniques. Clinical and Experimental Optometry, 83(5), 279-282. https://doi.org/10.1111/j.1444-0938.2000.tb05017.x
  29. Tirosh, O. & Sparrow, W. A. (2005). Age and walking speed effects on muscle recruitment in gait termination. Gait and Posture, 21(3), 279-288. https://doi.org/10.1016/j.gaitpost.2004.03.002
  30. Vaughan, C. L., Langerak, N. G. & O'Malley, M. J. (2003). Neuromaturation of human locomotion revealed by non-dimensional scaling. Experimental Brain Research, 153(1), 123-127. https://doi.org/10.1007/s00221-003-1635-x
  31. Vaughan, C. L. & O'Malley, M. J. (2003). Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait & Posture, 21(3), 350-362. https://doi.org/10.1016/j.gaitpost.2004.01.011
  32. Vaughan, C. L., Toit, L. L. & Roffey, M. (1987). Speed of walking and forces acting on the feet. In: Biomechanics, X-A, B. Jonsson(ed.), Iillinois: Human Kinetics Publishers, 349-354.
  33. Whittle, M. W. (1990). Gait Analysis: Introduction. Oxford Orthopaedic Engineering Centre: University of Oxford.
  34. Winter, D. A. & White, S. C. (1987). Cause-effect correlations of variables of gait. In: Biomechanics, X-A, B. Jonsson(ed.), Iillinois: Human Kinetics Publishers, 363-368.