DOI QR코드

DOI QR Code

충격량-운동량 이론을 접목시킨 발포 폴리프로필렌의 구성방정식

A Constitutive Equation with Impulse-Momentum Theory for the Expanded Polypropylene

  • Kim, Byeong Kil (Department of Mechanical Engineering, Kongju National University) ;
  • Cho, Jae Ung (Division of Mechanical & Automotive Engineering, Kongju National University) ;
  • Jeong, Kwang Young (Division of Mechanical & Automotive Engineering, Kongju National University) ;
  • Kim, Nam Hoon (Division of Mechanical & Automotive Engineering, Kongju National University) ;
  • Oh, Bum S. (Division of Mechanical & Automotive Engineering, Kongju National University) ;
  • Hahn, Youngwon (Dassault Systemes SIMULIA) ;
  • Cheon, Seong S. (Division of Mechanical & Automotive Engineering, Kongju National University)
  • 투고 : 2016.03.02
  • 심사 : 2016.06.27
  • 발행 : 2016.06.30

초록

본 연구에서는 EPP(Expanded polypropylene) 준정적 및 충격 하중에 대한 구성방정식을 표현하는 데 있어서, 충격량-운동량 이론을 연계하였다. 또한, 구성방정식을 이루는 물리적으로 의미있는 변수들에 대해, 상대밀도의 함수로 표현하였다. 이를 위해, 연립 비선형 뉴튼-랩손 방법을 사용하여, 준정적 시험결과에 맞는 구성방정식의 변수값을 선정하였다. 또한, 충격량-운동량 이론이 구성방정식과 연계되어, 충격시 응력-변형률 선도를 변형률 속도에 따라 구하였고, 충격시험결과와 비교하였다. 향후에는 다른 재질의 발포고분자에도 본 구성방정식이 적용될 수 있을 것으로 사료된다.

In this paper, impulse-momentum theory was coupled to a constitutive equation both for implementing quasi-static and impact characteristics of EPP (Expanded polypropylene). Also, parameters which have physical meanings were expressed as functions of relative density. Simultaneous nonlinear Newton-Raphson method was applied to find the proper values for parameters in the constitutive equation along with quasi-static test data. Results from the impulse-momentum theory coupled constitutive equation showed good agreement with experimental data and the potential to be applied to different material type polymeric foam.

키워드

참고문헌

  1. Willinger, M., "Industrial Development of Composite Materials: Toward a Functional Appraisal," Composites Science and Technology, Vol. 34, 1989, pp. 53-71. https://doi.org/10.1016/0266-3538(89)90077-8
  2. Moutos Franklin T., Freed Lisa E., and Guilak Farshid, "A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage," Journal of Nature Materials, Vol. 6, 2007, pp. 162-167. https://doi.org/10.1038/nmat1822
  3. Kim, M.H., Cho, S.S., and Ha, S.K., "Design and Structural Analysis of Aluminum Bumper for Automobiles," Transactions of KSAE, Vol. 7, No. 3, 1999, pp. 217-227.
  4. Choi, C.H., "Expanded Polypropylene and Packaging Materials," Journal of the Monthly Packaging world, No. 214, 1996, pp. 58-67.
  5. Kim, H.K., Kim, B.J., Jeong, K.Y., and Cheon, S.S., "Experimental Study for the Impact Characteristics of Expanded EPP/EPS Foams," Journal of the Korean Society for Composite Materials, Vol. 26, No. 6, 2013, pp. 343-348.
  6. Bouuix, R., Voit, P., and Lataillade, J., "Polypropylene Foam Behaviour Under Dynamic Loading : Strain Rate, Density and Microstructure Effects," International Journal of Impact Engineering, Vol. 36, Issue. 2, 2009, pp. 329-342. https://doi.org/10.1016/j.ijimpeng.2007.11.007
  7. Jeong, K.Y., Cheon, S.S., and Munshi, M.B., "A Constitutive Model for Polyurethane Foam with Strain Rate Sensitivity," Journal of Mechanical Science and Technology, Vol. 26, No. 7, 2012, pp. 2033-2038. https://doi.org/10.1007/s12206-012-0509-1
  8. Kim, B.J., Kim, H.K., and Cheon, S.S., "A Study on the Absorbed Energy of Polymer Material of Vehicles between Mass and Strain Rate Effect Velocity Value Based on Constant Energy," Proceeding of the Korean Society for Composite Materials, Korea, May 2013, pp. 43-44.
  9. Kim, H.K., and Cheon, S.S., "A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene," Proceeding of the Korean Society for Composite Materials, Korea, Vol. 27, No. 4, 2014, pp. 130-134.