DOI QR코드

DOI QR Code

Attachment of Silver Nanoparticles to the Wool Fiber Using Glycidyltrimethylammonium Chloride(GTAC)

Glycidyltrimethylammonium Chloride(GTAC)를 이용한 양모 섬유 표면의 Silver Nanoparticle 부착

  • Lee, Seungyoung (Department of Textile Engineering and Technology, Yeungnam University) ;
  • Sul, In Hwan (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jaewoong (Department of Textile Engineering and Technology, Yeungnam University)
  • 이승영 (영남대학교 융합섬유공학과) ;
  • 설인환 (금오공과대학교 소재디자인공학과) ;
  • 이재웅 (영남대학교 융합섬유공학과)
  • Received : 2016.04.29
  • Accepted : 2016.06.02
  • Published : 2016.06.27

Abstract

Silver nanoparticles(AgNPs) were attached to wool fibers using glycidyltrimethylammonium chloride(GTAC), which is a type of quaternary ammonium salt. GTAC, which contains an epoxy functional group that, under high temperatures, generates a ring-opening reaction with wool fibers, which contain the amine group. Then, the AgNPs are attached to the surface of the GTAC-treated wool fibers by treatment with a silver colloidal solution. The process involves the following procedures: (1) The wool fibers are immersed in the GTAC solution, followed by pre-drying at $80^{\circ}C$ and curing at $180^{\circ}C$ to induce an alteration in the chemical structure; and (2) The wool fibers treated with GTAC are immersed in the silver colloid at $40^{\circ}C$ for 120 min to chemically induce a strong attachment of the AgNPs to the wool fibers. Scanning electron microscopy was used to analyze the influence of the concentrations of GTAC and the silver colloid, as well as the influence of the applied temperature of the silver colloid on the wool fibers, and the influence of the morphological changes in the wool fiber surfaces. As a result, the enhanced concentrations of GTAC and the silver colloid together with an elevated applied temperature of silver colloid have a tendency to increase in Ag atomic%.

Keywords

References

  1. D. Kartofelev and A. Stulov, Propagation of Deformation Waves in Wool Felt, Acta. Mech. Solida Sin., 225, 3103(2014).
  2. M. Pollini, F. Paladini, A. Licciulli, A. Maffezzoli, l. Nicolais, and A. Sannino, Silver-Coated Wool Yarns with Durable Antibacterial Properties, J. Appl. Polym. Sci., 125, 2239(2012). https://doi.org/10.1002/app.36444
  3. F. S. Ghaheh, S. M. Mortazavi, F. Alihosseini, A. Fassihi, A. S. Nateri, and D. Abedi, Assessment of Antibacterial Activity of Wool Fabrics Dyed with Natural Dyes, J. Clean. Prod., 72, 139(2014). https://doi.org/10.1016/j.jclepro.2014.02.050
  4. G. Freddi, T. Arai, G. M. Colonna, A. Boschi, and M. Tsukada, Binding of Metal Cations to Chemically Modified Wool and Antimicrobial Properties of the Wool-Metal Complexes, J. Appl. Polym. Sci., 82, 3513(2001). https://doi.org/10.1002/app.2213
  5. M. Diz, M. R. Infante, P. Erra, and A. Manresa, Antimicrobial Activity of Wool Treated with a New Thiol Cationic Surfactant, Textile. Res. J., 71, 695(2001). https://doi.org/10.1177/004051750107100808
  6. P. Zhu and G. Sun, Antimicrobial Finishing of Wool Fabrics Using Quaternary Ammonium Salts, J. Appl. Polym. Sci., 93, 1037(2004). https://doi.org/10.1002/app.20563
  7. H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, A Study on Multifunctional Wool Textiles Treated with Nano-Sized Silver, J. Mater. Sci., 42, 8020(2007). https://doi.org/10.1007/s10853-007-1572-3
  8. C. H. Xue, J. Chen, W. Yin, S. T. Jia, and J. Z. Ma, Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles, Appl. Surf. Sci., 258, 2468(2012). https://doi.org/10.1016/j.apsusc.2011.10.074
  9. C. Y. Chen and C. L. Chiang, Preparation of Cotton Fibers with Antibacterial Silver Nanoparticles, Mater. Lett., 62, 3607(2008). https://doi.org/10.1016/j.matlet.2008.04.008
  10. D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, The Synthesis of Chitosan-Based Silver Nanoparticles and Their Antibacterial Activity,Carbohyd. Res., 344, 2375(2009). https://doi.org/10.1016/j.carres.2009.09.001
  11. W. K.Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, Antibacterial Activity and Mechanism of Action of the SilverIon in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microb., 74, 2171(2008). https://doi.org/10.1128/AEM.02001-07
  12. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles, Nano. Lett., 12, 4271(2012). https://doi.org/10.1021/nl301934w
  13. C. M. Jones and E. M. V. Hock, A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment, J. Nanopart. Res., 12, 1531(2010). https://doi.org/10.1007/s11051-010-9900-y
  14. S. Shrivastava, T.Bera, A.Roy, G. Singh, P. Ramachandrarao, and D. Dash, Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles, Nanotechnology, 18, 225103(2007). https://doi.org/10.1088/0957-4484/18/22/225103
  15. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che, Silver Nanoparticles: Partial Oxidation and Antibacterial Activities, J. Biol. Inorg. Chem., 12, 527(2007). https://doi.org/10.1007/s00775-007-0208-z
  16. S. S. Kim,J. E. Park, and J. Lee, Properties and Antimicrobial Efficacy of Cellulose Fiber Coated with Silver Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS), J. Appl. Polym. Sci., 119, 2261(2011). https://doi.org/10.1002/app.32975
  17. S. Ravindra, Y. M. Mohan, N. N. Reddy, and K. M. Raju, Fabrication of AntibacterialCotton Fibres Loaded with Silver Nanoparticles Via "Green Approach", Colloid. Surface. A., 367, 31(2010). https://doi.org/10.1016/j.colsurfa.2010.06.013
  18. H. J. Lee, S. Y. Yeo, and S. H. Jeong, Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics, J. Mater. Sci., 38, 2199(2003). https://doi.org/10.1023/A:1023736416361
  19. S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, Layer-by-Layer Deposition of Antimicrobial Silver Nanoparticles on Textile Fibers, Colloid. Surface. A., 289, 105(2006). https://doi.org/10.1016/j.colsurfa.2006.04.012
  20. Y. H. Xiao,J. H. Chen, M. Fang, X. D. Xing, H. Wang, Y.J. Wang, and F. Li, Antibacterial Effects of Three Experimental Quaternary Ammonium Salt(QAS) Monomers on Bacteria Associated with Oral Infections, J. Oral. Sci., 50, 323(2008). https://doi.org/10.2334/josnusd.50.323
  21. X. Wang and C. Wang, The Antibacterial Finish of Cotton Via Sols Containing Quaternaryammonium Salts, J. Sol-Gel. Sci. Techn., 50, 15(2009). https://doi.org/10.1007/s10971-009-1914-5
  22. G. Lu, D. Wu, and R. Fu, Studies on the Synthesis and Antibacterial Activities of Polymeric Quaternary Ammonium Salts from Dimethylaminoethyl Methacrylate, React. Funct. Polym., 67, 355(2007). https://doi.org/10.1016/j.reactfunctpolym.2007.01.008