DOI QR코드

DOI QR Code

중고도-장기체공 무인비행을 위한 비행체 성능 분석 및 역설계

Reverse-Engineering and Analysis of Performance for Medium-Altitude Long Endurance Unmanned Aerial Vehicle

  • 투고 : 2015.08.27
  • 심사 : 2016.05.30
  • 발행 : 2016.06.01

초록

본 연구의 목적은 중고도-장기체공 무인기의 성능을 역설계를 통해 분석하는 것이며, 역설계를 위한 모델로 RQ-1 Predator를 선정하였다. CATIA 프로그램을 사용하여 RQ-1 Predator의 외형에 대한 형상과 중량 분포를 생성하였다. RQ-1 Predator의 공력특성은 주로 와류격자법과 경험식을 조합하여 수행하였으며, 추진 성능은 Howe의 경험식을 통해 수행되었다. 상승률, 실용상승한도, 항속 거리, 그리고 체공 시간에 대한 역설계를 수행하였으며, 역설계 결과가 참고문헌과 잘 일치함을 확인하였다.

The main purpose of this study was to analyze the performance of a medium-altitude long endurance unmanned aerial vehicle through reverse-engineering method. The external configuration data of the RQ-1 Predator was reverse-engineered from related photos and specification data available on public domains, which also were used to generate the CATIA modeling and weigh distribution data of the UAV. The aerodynamic characteristics of RQ-1 Predator were mainly predicted the vortex lattice method and an empirical method, which the propeller performance was analyzed by the empirical method proposed by Howe. The rate of climb, service ceiling, range, and the loiter endurance of the UAV was analyzed, which showed good agreement with the reference data.

키워드

참고문헌

  1. Chang, D., Kang, W., Kim, J., "Global UAS market trends and forecase", The Korean Society for Aeronautical and Space Sciences conference, 2013, pp. 1140-1145.
  2. Teal Group, "World Unmanned Aerial Systems 2012 market profile and forecast", April, 2012, pp. 2.
  3. Kim, H., Jeon, B., Lee, N., Choi, S., and Chang, Y., "Development of Mission Analysis and Design Tool for ISR UAV Mission Planning" Journal of the Korean Society for Aeronautical and Space Sciences, 42(2), pp. 181-190. https://doi.org/10.5139/JKSAS.2014.42.2.181
  4. Jane's Information Group, http://www.janes.com/
  5. Raymer, D. P., "Aircraft Design : A Conceptual Approach Third Edition", AIAA Education Series, AIAA Inc., 1999.
  6. Gundlach,. F., "Multi-Disciplinary Design Optimization of Subsonic Fixed-Wing Unmanned Aerial Vehicles Projected Through 2025", Ph. D. Dissertation, Department of Aerospace and Ocean Engineering, Virginia Tech., pp.155-161, Feb., 9, 2004.
  7. https://sites.lafayette.edu/egrs451-sp12-uav/technology/
  8. Park, K., Min, S., Ahn, J., and Lee, D., "Multidisciplinary design optimization(MDO) of a Medium-Sized Solar Powered HALE UAV Considering Energy Balancing," Journal of the Korean Society for Aeronautical and Space Sciences, 40(2), pp. 129-138. https://doi.org/10.5139/JKSAS.2012.40.2.129
  9. Panagiotou, P., Kaparos, P., and Yakinthos, K., "Winglet design and optimization for a MALE UAV using CFD," Aerospace Science and Technology, 39, pp. 190-205
  10. Roskam, J. and Lan, C. E., "Airplane Aerodynamics and Performance", Roskam Aviation and Engineering Corp., Ottawa, Kansas, 1981.
  11. Mason, W. H., "Configuration Aerodynamics", Virginia Tech., pp. 3-41, 2006.
  12. Rotax Engine Company Homepage, http://www.flyrotax.com
  13. Howe, D., "Aircraft Conceptual Design Synthesis", Professional Engineering Publish, pp. 67-70, 2000.