DOI QR코드

DOI QR Code

명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images

  • Lee, Gyuhyun (Ulsan National Institute of Science and Technology) ;
  • Quan, Tran Minh (Ulsan National Institute of Science and Technology) ;
  • Jeong, Won-Ki (Ulsan National Institute of Science and Technology)
  • 투고 : 2016.06.18
  • 심사 : 2016.07.07
  • 발행 : 2016.07.14

초록

본 논문은 명시야 (bright-field) 현미경 영상를 위한 데이터 기반 세포 분할 알고리즘을 제시한다. 제시된 알고리즘은 일반적인 사전 학습 기법과 다르게 동시에 두 개의 사전과 관련된 희소 코드 (sparse code)를 통해 정의된 에너지 함수의 최소화를 진행하게 된다. 두 개의 사전 중 하나는 명시야 영상에 대해 학습된 사전이고 다른 하나는 사람에 의해 수작업으로 세포 분할된 영상에 대해 학습된 것이다. 학습된 두 개의 사전을 세포 분할 될 새로운 입력 영상에 대해 적용하여 이와 관련된 희소 코드를 획득한 후 픽셀 단위의 분할을 진행하게 된다. 효과적인 에너지 최소화를 위해 합성곱 희소 코드 (Convolutional Sparse Coding)와 Alternating Direction of Multiplier Method(ADMM)이 사용되었고 GPU를 사용하여 빠른 분산 연산이 가능하다. 본 연구는 이전에 사용된 가변형 모델 (deformable model)을 이용한 세포 분할 방식과는 다르게 제시된 알고리즘은 세포 분할을 위해 사전 지식이 필요없이 데이터 기반의 학습을 통해서 쉽고 효율적으로 세포 분할을 진행할 수 있다.

Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.

키워드

참고문헌

  1. H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential," Biomedical Engineering, IEEE Reviews in, vol. 7, pp. 97-114, 2014. https://doi.org/10.1109/RBME.2013.2295804
  2. J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press, 1999, vol. 3.
  3. T. F. Chan and L. A. Vese, "Active contours without edges," Image processing, IEEE transactions on, vol. 10, no. 2, pp. 266-277, 2001. https://doi.org/10.1109/83.902291
  4. S. Arslan, T. Ersahin, R. Cetin-Atalay, and C. Gunduz-Demir, "Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images," Medical Imaging, IEEE Transactions on, vol. 32, no. 6, pp. 1121-1131, 2013. https://doi.org/10.1109/TMI.2013.2255309
  5. S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces. Springer Science & Business Media, 2006, vol. 153.
  6. L. Rueda Villegas, R. Alis, M. Lepilliez, and S. Tanguy, "A ghost fluid/level set method for boiling flows and liquid evaporation: Application to the leidenfrost effect," Journal of Computational Physics, vol. 316, pp. 789-813, 2016. https://doi.org/10.1016/j.jcp.2016.04.031
  7. A. Gharipour and A. W.-C. Liew, "Segmentation of cell nuclei in fluorescence microscopy images: An integrated framework using level set segmentation and touching-cell splitting," Pattern Recognition, vol. 58, pp. 1-11, 2016. https://doi.org/10.1016/j.patcog.2016.03.030
  8. Z. Lu, G. Carneiro, and A. P. Bradley, "An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells," Image Processing, IEEE Transactions on, vol. 24, no. 4, pp. 1261-1272, 2015. https://doi.org/10.1109/TIP.2015.2389619
  9. X. Qi, F. Xing, D. J. Foran, and L. Yang, "Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set," Biomedical Engineering, IEEE Transactions on, vol. 59, no. 3, pp. 754-765, 2012. https://doi.org/10.1109/TBME.2011.2179298
  10. F. Xing and L. Yang, "Fast cell segmentation using scalable sparse manifold learning and affine transform-approximated active contour," in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, 2015, pp. 332-339.
  11. M. Aharon, M. Elad, and A. Bruckstein, "K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation technion-israel inst. of technology, 2005," Tech. Ref.
  12. D. L. Donoho, "Compressed sensing," Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
  13. M. Elad and M. Aharon, "Image denoising via learned dictionaries and sparse representation," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006, pp. 895-900.
  14. M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2528-2535.
  15. H. Bristow, A. Eriksson, and S. Lucey, "Fast convolutional sparse coding," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 391-398.
  16. B. Wohlberg, "Efficient convolutional sparse coding," in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 7173-7177.
  17. B.Wohlberg, "Efficient algorithms for convolutional sparse representations," Image Processing, IEEE Transactions on, vol. 25, no. 1, pp. 301-315, 2016. https://doi.org/10.1109/TIP.2015.2495260
  18. F. Heide, W. Heidrich, and G. Wetzstein, "Fast and flexible convolutional sparse coding," in Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE, 2015, pp. 5135-5143.
  19. S. Bahrampour, N. M. Nasrabadi, A. Ray, and W. K. Jenkins, "Multimodal task-driven dictionary learning for image classification," Image Processing, IEEE Transactions on, vol. 25, no. 1, pp. 24-38, 2016. https://doi.org/10.1109/TIP.2015.2496275
  20. R. Annunziata and E. Trucco, "Accelerating convolutional sparse coding for curvilinear structures segmentation by refining scird-ts filter banks," 2016.
  21. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," arXiv preprint arXiv:1408.5093, 2014.
  22. A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak, and V. Hartenstein, "An integrated micro- and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy," PLoS Biology, vol. 8, no. 10, p. e1000502, oct 2010. [Online]. Available: http://dx.doi.org/10.1371/journal.pbio.1000502
  23. T. Tong, R. Wolz, P. Coupe, J. V. Hajnal, D. Rueckert, A. D. N. Initiative, et al., "Segmentation of mr images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling," NeuroImage, vol. 76, pp. 11-23, 2013. https://doi.org/10.1016/j.neuroimage.2013.02.069