DOI QR코드

DOI QR Code

Antioxidant Activities of Various Extracts from Korean Yam (Dioscorea batatas DECNE.)

  • Duan, Yishan (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Gyeong-Hwuii (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2016.05.01
  • Accepted : 2016.06.20
  • Published : 2016.06.30

Abstract

The objective of this study was to investigate the antioxidant activity of Korean yam (Dioscorea batatas $D_{ECNE.}$) by different extraction solvents including 70% methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v). Raw yam was analyzed for its color property, total phenol content and antioxidant activity. Yam possessed high $L^*$ value and $H^{\circ}$ value, which were $81.64{\pm}2.59$ and $83.36{\pm}0.15$, respectively. Raw yam was found to have great antioxidant activity evaluated through ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] radical scavenging activity, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, reducing power, and ferric reducing antioxidant power. Total phenol contents of various extracts from raw yam increased in the following order: 70% methanol extract ($37.62{\pm}0.88mg\;CAE/g$), 70% ethanol extract ($43.38{\pm}0.66mg\;CAE/g$) and CM extract ($67.17{\pm}0.12mg\;CAE/g$), respectively. The same trend was also could be found in the ABTS radical scavenging activity, DPPH radical scavenging activity and ferric reducing antioxidant power assays. These results implied that Korean yam might play an important role in antioxidation and serve as the bio-health functional food to take a good part in prevention of human diseases and aging.

Keywords

References

  1. J. T. Lin, D. J. Yang, Determination of steroidal saponins in different organs of yam (Dioscorea pseudojaponica Yamamoto), Food Chem., 108, 1068 (2008). https://doi.org/10.1016/j.foodchem.2007.11.041
  2. C. S. Hariprakash, B. Nambisan, Carbohydrate metabolism during dormancy and sprouting in yam (Dioscorea) tubers: changes in carbohydrate constituents in yam (Dioscorea) tubers during dormancy and sprouting, J. Agric. Food Chem., 44, 3066 (1996). https://doi.org/10.1021/jf950784d
  3. J. P. D. Wanasundera, G. Ravindran, Nutritional assessment of yam (Dioscorea alata) tubers, Plant Foods Human Nutr., 46, 33 (1994). https://doi.org/10.1007/BF01088459
  4. M. R. Bhandari, J. Kawabata, Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal, Food Chem., 88, 163 (2004). https://doi.org/10.1016/j.foodchem.2003.12.027
  5. J. P. D. Wanasundera, G. Ravindran, Effects of cooking on the nutrient and antinutrient contents of yam tubers (Dioscorea alata and Dioscorea esculenta), Food Chem., 45, 247 (1992). https://doi.org/10.1016/0308-8146(92)90155-U
  6. W. C. Hou, H. J. Chen, Y. H. Lin, Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbate reductase and monodehydroascorbate reductase activities, Plant Sci., 149, 151 (1999). https://doi.org/10.1016/S0168-9452(99)00152-1
  7. W. C. Hou, M. H. Lee, H. J. Chen, W. L. Liang, C. H. Han, Y. W. Liu, Y. H. Lin, Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber, Food Chem., 49, 4956 (2001). https://doi.org/10.1021/jf010606m
  8. P. S. Oh, K. T. Lim, Plant glycoprotein modulates the expression of interleukin-1${\beta}$ via inhibition of MAP kinase in HMC-1 cells, Biosc. Biotechnol. Biochem., 72, 2133 (2008). https://doi.org/10.1271/bbb.80204
  9. P. S. Oh, K. T. Lim, Antioxidant activity of Dioscorea batatas Decne glycoprotein, European Food Res. Technol.. 226, 507 (2008). https://doi.org/10.1007/s00217-007-0563-6
  10. R. F. Dawson, Diosgenin production North America, Hort. Technol.. 1, 22-27 (1991).
  11. W. G. Taylor, J. L. Elder, P. R. Chang, K. W. Richards, Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds, J. Agric. Food Chem., 48, 5206 (2000). https://doi.org/10.1021/jf000467t
  12. M. Araghiniknam, S. Chung, T. Nelson-White, C. Eskelson, R. R. Waston, Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans, Life Sci., 59, 147 (1996).
  13. Y. M. Liu, K. W. Lin, Antioxidative ability, dioscorin stability, and the quality of yam chips from various yam species as affected by processing method, Food Chem., 74, 118 (2009).
  14. D. Harrison, K. K. Griendling, U. Landmesser, B. Hornig, H. Drexler, Role of oxidative stress in atherosclerosis, Am. J. Cardiology, 91, 7 (2003). https://doi.org/10.1016/S0002-9149(02)03144-2
  15. L. Migliore, F. Coppede, Genetic and environmental factors in cancer and neurodegenerative diseases, Mutation Research, 512, 135 (2002). https://doi.org/10.1016/S1383-5742(02)00046-7
  16. E. C. Cadenas, K. J. A. Davies, Mitochondrial free radical generation, oxidative stress, and aging, Free Radic. Biol. Med., 29, 222 (2000). https://doi.org/10.1016/S0891-5849(00)00317-8
  17. J. Chen, W. M. Da, D. W. Zhang, Q. Liu, J. H. Kang, Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells, Pharmazie, 60, 57 (2005).
  18. M. Shaghaghi, J. L. Manzoori, A. Jouyban, Determinations of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteau spectrophotometric method, Food Chem., 108, 695 (2007).
  19. Y. X. Sun, S. Hayakawa, M. Ogawa, K. Izumori, Antioxidant properties of custard pudding dessert containing rare hexose, D-psicose, Food Control, 18, 220 (2005).
  20. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  21. Y. S. Duan, M. A. Kim, J. H. Seong, H. S. Chung, H. S. Kim, Antioxidative activities of various solvent extracts from haw (Crataegus pinnatifida Bunge), Kor. J. Food Preserv.. 21, 246 (2014). https://doi.org/10.11002/kjfp.2014.21.2.246
  22. L. Barros, M. J. Ferreira, B. Queiros, C. F. R. Ferreira, Isabel, P. Baptista, Total phenols, ascorbic acid, ${\beta}$-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities, Food Chem., 103, 413 (2007). https://doi.org/10.1016/j.foodchem.2006.07.038
  23. F. F. Benzie, Iris, J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal. Biochem., 239, 70 (1996). https://doi.org/10.1006/abio.1996.0292
  24. R. J. Robbins, Phenolic acids in foods: an overview of analytical methodology, J. Agric. Food Chem., 51, 2866 (2003). https://doi.org/10.1021/jf026182t
  25. Y. S. Velioglu, G. Mazza, L. Gao, B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 46, 4113 (1998). https://doi.org/10.1021/jf9801973
  26. B. B. Li, B. Smith, M. M. Hossain, Extraction of phenolics from citrus peels I. solvent extraction method, Separa. Purifi. Technol., 48, 182 (2006). https://doi.org/10.1016/j.seppur.2005.07.005
  27. V. Roginsky, E. A. Lissi, Review of methods to determine chain-breaking antioxidant activity in food, Food Chem., 92, 235 (2005). https://doi.org/10.1016/j.foodchem.2004.08.004
  28. L. S. Lai, S. T. Chou, W. W. Chao, Studies on the antioxidative activities of hsian-tsao (Mesona procumbens Hemsl) leaf gum, J. Agric. Food Chem., 49, 963 (2001). https://doi.org/10.1021/jf001146k
  29. C. L. Hsu, W. Chen, Y. M. Weng, C. Y. Tseng, Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods, Food Chem., 83, 85 (2003). https://doi.org/10.1016/S0308-8146(03)00053-0
  30. J. Bertoncelj, U. Dobersek, M. Jamnik, T. Golob, Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey, Food Chem., 105, 822 (2007). https://doi.org/10.1016/j.foodchem.2007.01.060