DOI QR코드

DOI QR Code

Effects of Panax ginseng, zearalenol, and estradiol on sperm function

  • Gray, Sandra L. (Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University) ;
  • Lackey, Brett R. (Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University) ;
  • Boone, William R. (ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group)
  • Received : 2015.03.17
  • Accepted : 2015.08.16
  • Published : 2016.07.15

Abstract

Background: Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. Methods: The affinity of these compounds for estrogen receptor (ER)-alpha and beta ($ER{\alpha}$ and $ER{\beta}$)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. Results: Zearalenol-but not estradiol ($E_2$)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone ($P_4$) and ionophore. Conclusion: Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including $P_4$, $E_2$, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.

Keywords

References

  1. Wade MA, Jones RC, Murdoch RN, Aitken RJ. Motility activation and second messenger signalling in spermatozoa from rat cauda epididymidis. Reproduction 2003;125:175-83. https://doi.org/10.1530/rep.0.1250175
  2. Benoff S. Modelling human sperm-egg interactions in vitro: signal transduction pathways regulating the acrosome reaction. Mol Hum Reprod 1998;4:453-71. https://doi.org/10.1093/molehr/4.5.453
  3. Benoff S. Preliminaries to fertilization. The role of cholesterol during capacitation of human spermatozoa. Hum Reprod 1993;8:2001-6. https://doi.org/10.1093/oxfordjournals.humrep.a137971
  4. Huret JL, Miquereau MA. Nuclear chromatin decondensation abilities of human sperm. Arch Androl 1984;12:19-22.
  5. Rosenbusch BE. Frequency and patterns of premature sperm chromosome condensation in oocytes failing to fertilize after intracytoplasmic sperm injection. J Assist Reprod Genet 2000;17:253-9. https://doi.org/10.1023/A:1009454231659
  6. Cho HW, Nie R, Carnes K, Zhou Q, Sharief NAQ, Hess RA. The antiestrogen ICI 182,780 induces early effects on the adult male mouse reproductive tract and long-term decreased fertility without testicular atrophy. Reprod Biol Endocrinol 2003;1:57. https://doi.org/10.1186/1477-7827-1-57
  7. Mitwally MFM, Casper RF, Diamond MP. The role of aromatase inhibitors in ameliorating deleterious effects of ovarian stimulation on outcome of infertility treatment. Reprod Biol Endocrinol 2005;3:54. https://doi.org/10.1186/1477-7827-3-54
  8. Bujan L, Mieusset R, Audran F, Lumbroso S, Sultan C. Increased oestradiol level in seminal plasma in infertile men. Hum Reprod 1993;8:74-7. https://doi.org/10.1093/oxfordjournals.humrep.a137878
  9. Sasano H, Suzuki T, Harada N. From endocrinology to intracrinology. Endocr Pathol 1998;9:9-20. https://doi.org/10.1007/BF02739947
  10. Kozumplik J, Vinkler A. Levels of testosterone and 17-beta estradiol in the seminal plasma of bulls and boars. Vet Med (Praha) 1982;27:715-20.
  11. At-Taras EE, Berger T, McCarthy MJ, Conley AJ, Nitta-Oda BJ, Roser JF. Reducing estrogen synthesis in developing boars increases testis size and total sperm production. J Androl 2006;27:552-9. https://doi.org/10.2164/jandrol.05195
  12. Marrs RP, Lobo R, Campeau JD, Nakamura RM, Brown J, Ujita EL, diZerega GS. Correlation of human follicular fluid inhibin activity with spontaneous and induced follicle maturation. J Clin Endocrinol Metab 1984;58:704-9. https://doi.org/10.1210/jcem-58-4-704
  13. Bing YZ, Hirao Y, Iga K, Che LM, Takenouchi N, Kuwayama M, Fuchimoto D, Rodriguez-Martinez H, Nagai T. In vitro maturation and glutathione synthesis of porcine oocytes in the presence or absence of cysteamine under different oxygen tensions: role of cumulus cells. Reprod Fertil Dev 2002;14:125-31. https://doi.org/10.1071/RD01127
  14. Dode MA, Graves C. Involvement of steroid hormones on in vitro maturation of pig oocytes. Theriogenology 2002;57:811-21. https://doi.org/10.1016/S0093-691X(01)00700-2
  15. Fukui Y. Effects of sera and steroid hormones on development of bovine oocytes matured and fertilized in vitro and co-cultured with bovine oviduct epithelial cells. J Anim Sci 1989;67:1318-23. https://doi.org/10.2527/jas1989.6751318x
  16. Cheng CY, Boettcher B. Effects of steroids on the in vitro forward migration of human spermatozoa. Contraception 1981;24:183-94. https://doi.org/10.1016/0010-7824(81)90091-3
  17. Idaomar M, Guerin JF, Lornage J, Moncharmont P, Czyba JC. Effects of estradiol and its antagonist tamoxifen on motility and metabolism of human spermatozoa. Adv Contracept Deliv Syst 1987;3:337-45.
  18. Mbizvo MT, Burkman LJ, Alexander NJ. Human follicular fluid stimulates hyperactivated motility in human sperm. Fertil Steril 1990;54:708-12. https://doi.org/10.1016/S0015-0282(16)53834-5
  19. Mbizvo MT, Thomas S, Fulgham DL, Alexander NJ. Serum hormone levels affect sperm function. Fertil Steril 1990;54:113-20. https://doi.org/10.1016/S0015-0282(16)53646-2
  20. Bureau M, Bailey JL, Sirard M-A. Binding regulation of porcine spermatozoa to oviductal vesicles in vitro. J Androl 2002;23:188-93.
  21. Boquest AC, Summers PM. Effects of 17beta-oestradiol or oestrous stagespecific cow serum on the ability of bovine oviductal epithelial cell monolayers to prolong the viability of bull spermatozoa. Anim Reprod Sci 1999;57:1-14. https://doi.org/10.1016/S0378-4320(99)00052-4
  22. Salvati G, Genovesi G, Marcellini L, Paolini P, De Nuccio I, Pepe M, Re M. Effects of Panax ginseng C.A. Meyer saponins on male fertility. Panminerva Med 1996;38:249-54.
  23. Friedl R, Moeslinger T, Kopp B, Spieckermann PG. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br J Pharmacol 2001;134:1663-70. https://doi.org/10.1038/sj.bjp.0704425
  24. Greenspan EM. Ginseng and vaginal bleeding. JAMA 1983;249:2018.
  25. Hopkins MP, Androff L, Benninghoff AS. Ginseng face cream and unexplained vaginal bleeding. Am J Obstet Gynecol 1988;159:1121-2. https://doi.org/10.1016/0002-9378(88)90426-7
  26. Palmer BV, Montgomery AC, Monteiro JC. Gin Seng and mastalgia. Br Med J 1978;1:1284.
  27. Punnonen R, Lukola A. Oestrogen-like effect of ginseng. Br Med J 1980;281:1110. https://doi.org/10.1136/bmj.281.6248.1110
  28. Yamamoto M, Kumagai A, Yamamura Y. Stimulatory effect of Panax ginseng principles on DNA and protein synthesis in rat testes. Arzneimittelforschung 1977;27:1404-5.
  29. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  30. Park JW, Kim EK, Shon DH, Kim YB. Occurrence of zearalenone in Korean barley and corn foods. Food Addit Contam 2002;19:158-62. https://doi.org/10.1080/02652030110071345
  31. Soldati F, Sticher O. HPLC separation and quantitative determination of ginsenosides from Panax ginseng, Panax quinquefolium and from ginseng drug preparations. 2nd communication. Planta Med 1980;39:348-57. https://doi.org/10.1055/s-2008-1074929
  32. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925-30. https://doi.org/10.1073/pnas.93.12.5925
  33. Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 1998;19:253-86. https://doi.org/10.1006/frne.1998.0170
  34. Gray SL, Lackey BR, Tate PL, Riley MB, Camper ND. Mycotoxins in root extracts of American and Asian ginseng bind estrogen receptors alpha and beta. Exp Biol Med (Maywood) 2004;229:560-8. https://doi.org/10.1177/153537020422900615
  35. Caldwell RW, Tuite J, Stob M, Baldwin R. Zearalenone production by Fusarium species. Appl Microbiol 1970;20:31-4.
  36. Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 1987;7:253-306. https://doi.org/10.1016/0273-2300(87)90037-7
  37. Scott PM. Multi-year monitoring of Canadian grains and grain-based foods for trichothecenes and zearalenone. Food Addit Contam 1997;14:333-9. https://doi.org/10.1080/02652039709374535
  38. Kim IH, Son HY, Cho SW, Ha CS, Kang BH. Zearalenone induces male germ cell apoptosis in rats. Toxicol Lett 2003;138:185-92. https://doi.org/10.1016/S0378-4274(02)00405-8
  39. Kim JC, Kang HJ, Lee DH, Lee YW, Yoshizawa T. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Appl Environ Microbiol 1993;59:3798-802.
  40. Li F-Q, Li Y-W, Luo X-Y, Yoshizawa T. Fusarium toxins in wheat from an area in Henan Province, PR China, with a previous human red mould intoxication episode. Food Addit Contam 2002;19:163-7.
  41. Vargas EA, Preis RA, Castro L, Silva CM. Co-occurrence of aflatoxins B1, B2, G1, G2, zearalenone and fumonisin B1 in Brazilian corn. Food Addit Contam 2001;18:981-6. https://doi.org/10.1080/02652030110046190
  42. Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 2002;127:19-28. https://doi.org/10.1016/S0378-4274(01)00479-9
  43. Pitt JI, Basilico JC, Abarca ML, Lopez C. Mycotoxins and toxigenic fungi. Med Mycol 2000;38:41-6. https://doi.org/10.1080/mmy.38.s1.41.46
  44. Pitt JI. Toxigenic fungi: which are important? Med Mycol 2000;38(Suppl. 1): 17-22. https://doi.org/10.1080/mmy.38.s1.17.22
  45. Harwig J, Munro IC. Mycotoxins of possible importance in diseases of Canadian farm animals. Can Vet J 1975;16:125-38.
  46. Mirocha CJ, Schauerhamer B, Christensen CM, Niku-Paavola ML, Nummi M. Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Appl Environ Microbiol 1979;38:749-50.
  47. Ueno Y, Tashiro F. alpha-Zearalenol, a major hepatic metabolite in rats of zearalenone, an estrogenic mycotoxin of Fusarium species. J Biochem 1981;89:563-71. https://doi.org/10.1093/oxfordjournals.jbchem.a133232
  48. Chang K, Kurtz HJ, Mirocha CJ. Effects of the mycotoxin zearalenone on swine reproduction. Am J Vet Res 1979;40:1260-7.
  49. Kallela K, Ettala E. The oestrogenic Fusarium toxin (zearalenone) in hay as a cause of early abortions in the cow. Nord Vet Med 1984;36:305-9.
  50. El-Makawy A, Hassanane MS, Abd Alla ES. Genotoxic evaluation for the estrogenic mycotoxin zearalenone. Reprod Nutr Dev 2001;41:79-89. https://doi.org/10.1051/rnd:2001114
  51. Johnson JE, Boone WR, Blackhurst DW. Manual versus computer-automated semen analyses: Part II. Determination of the working range of a computerautomated semen analyzer. Fertil Steril 1996;65:156-9. https://doi.org/10.1016/S0015-0282(16)58044-3
  52. Mortimer D. Practical laboratory andrology. London: Oxford University Press; 1994.
  53. Tsakmakidis IA, Lymberopoulos AG, Khalifa TAA, Boscos CM, Saratsi A, Alexopoulos C. Evaluation of zearalenone and alpha-zearalenol toxicity on boar sperm DNA integrity. J Appl Toxicol 2008;28:681-8. https://doi.org/10.1002/jat.1322
  54. Fazeli A, Hage WJ, Cheng FP, Voorhout WF, Marks A, Bevers MM, Colenbrander B. Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol Reprod 1997;56:430-8. https://doi.org/10.1095/biolreprod56.2.430
  55. Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl 2001;22:45-53.
  56. Hammadeh ME, Zeginiadov T, Rosenbaum P, Georg T, Schmidt W, Strehler E. Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility. Arch Androl 2001;46:99-104. https://doi.org/10.1080/01485010117363
  57. Henkel R, Menkveld R, Kleinhappl M, Schill WB. Seasonal changes in human sperm chromatin condensation. J Assist Reprod Genet 2001;18:371-7. https://doi.org/10.1023/A:1016618405570
  58. Brokaw CJ. Regulation of sperm flagellar motility by calcium and cAMPdependent phosphorylation. J Cell Biochem 1987;35:175-84. https://doi.org/10.1002/jcb.240350302
  59. Lindemann CB, Goltz JS, Kanous KS. Regulation of activation state and flagellar wave form in epididymal rat sperm: evidence for the involvement of both Ca2+ and cAMP. Cell Motil Cytoskeleton 1987;8:324-32. https://doi.org/10.1002/cm.970080405
  60. Rotem R, Paz GF, Homonnai ZT, Kalina M, Lax J, Breitbart H, Naor Z. Ca(2+)-independent induction of acrosome reaction by protein kinase C in human sperm. Endocrinology 1992;131:2235-43. https://doi.org/10.1210/endo.131.5.1425422
  61. Irvine DS. Male reproductive health: cause for concern? Andrologia 2000;32:195-208. https://doi.org/10.1046/j.1439-0272.2000.00388.x
  62. Zheng J, Ramirez VD. Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase activity by estrogens: comparison with Na+, K+-ATPase of porcine cortex. Eur J Pharmacol 1999;368:95-102. https://doi.org/10.1016/S0014-2999(99)00012-6
  63. Tsakmakidis IA, Lymberopoulos a G, Alexopoulos C, Boscos CM, Kyriakis SC. In vitro effect of zearalenone and alpha-zearalenol on boar sperm characteristics and acrosome reaction. Reprod Domest Anim 2006;41:394-401. https://doi.org/10.1111/j.1439-0531.2006.00679.x
  64. Tsakmakidis IA, Lymberopoulos AG, Vainas E, Boscos CM, Kyriakis SC, Alexopoulos C. Study on the in vitro effect of zearalenone and alph-azearalenol on boar spermezona pellucida interaction by hemizona assay application. J Appl Toxicol 2007;27:498-505. https://doi.org/10.1002/jat.1239
  65. Kazanas N, Ely RW, Fields ML, Erdman JW. Toxic effects of fermented and unfermented sorghum meal diets naturally contaminated with mycotoxins. Appl Environ Microbiol 1984;47:1118-25.
  66. Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects. Mol Cell Endocrinol 2000;161:31-5. https://doi.org/10.1016/S0303-7207(99)00220-8
  67. Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Non-genomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009;308:39-46. https://doi.org/10.1016/j.mce.2009.02.006
  68. Idaomar M, Guerin JF, Lornage J, Czyba JC. Stimulation of motility and energy metabolism of spermatozoa from asthenozoospermic patients by 17 beta-estradiol. Arch Androl 1989;22:197-202. https://doi.org/10.3109/01485018908986772
  69. Wang Y, Storeng R, Dale PO, Abyholm T, Tanbo T. Effects of follicular fluid and steroid hormones on chemotaxis and motility of human spermatozoa in vitro. Gynecol Endocrinol 2001;15:286-92. https://doi.org/10.1080/gye.15.4.286.292
  70. Chen JC, Xu MX, Chen LD, Chen YN, Chiu TH. Effect of Panax notoginseng extracts on inferior sperm motility in vitro. Am J Chin Med 1999;27:123-8. https://doi.org/10.1142/S0192415X9900015X
  71. Chen JC, Chen LD, Tsauer W, Tsai CC, Chen BC, Chen YJ. Effects of Ginsenoside Rb2 and Rc on inferior human sperm motility in vitro. Am J Chin Med 2001;29:155-60. https://doi.org/10.1142/S0192415X01000174
  72. Choi S, Jung SY, Kim CH, Kim HS, Rhim H, Kim SC, Nah SY. Effect of ginsenosides on voltage-dependent Ca2+ channel subtypes in bovine chromaffin cells. J Ethnopharmacol 2001;74:75-81. https://doi.org/10.1016/S0378-8741(00)00353-6
  73. Rhim H, Kim H, Lee DY, Oh TH, Nah SY. Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate Ca2+ channel currents in rat sensory neurons. Eur J Pharmacol 2002;436:151-8. https://doi.org/10.1016/S0014-2999(01)01613-2
  74. Berruti G, Franchi E. Calcium and polyphosphoinositides: their distribution in relation to the membrane changes occurring in the head of boar spermatozoa. Eur J Cell Biol 1986;41:238-45.
  75. Byun BH, Shin I, Yoon YS, Kim SI, Joe CO. Modulation of protein kinase C activity in NIH 3T3 cells by plant glycosides from Panax ginseng. Planta Med 1997;63:389-92. https://doi.org/10.1055/s-2006-957719
  76. Nikolopoulou M, Soucek DA, Vary JC. Modulation of the lipid composition of boar sperm plasma membranes during an acrosome reaction in vitro. Arch Biochem Biophys 1986;250:30-7. https://doi.org/10.1016/0003-9861(86)90698-3
  77. Calaluce R, Kunkel MW, Watts GS, Schmelz M, Hao J, Barrera J, Gleason-Guzman M, Isett R, Fitchmun M, Tim Bowden G, et al. Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen Zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 2001;30:88-98. https://doi.org/10.1002/1098-2744(200102)30:2<88::AID-MC1017>3.0.CO;2-E
  78. De Jonge C. The cAMP-dependent kinase pathway and human sperm acrosomal exocytosis. Front Biosci 1996;1:d234-40. https://doi.org/10.2741/A128
  79. Doherty CM, Tarchala SM, Radwanska E, De Jonge CJ. Characterization of two second messenger pathways and their interactions in eliciting the human sperm acrosome reaction. J Androl 1995;16:36-46.
  80. Park HJ, Park KM, Rhee MH, Song YB, Choi KJ, Lee JH, Kim SC, Park KH. Effect of ginsenoside Rb1 on rat liver phosphoproteins induced by carbon tetrachloride. Biol Pharm Bull 1996;19:834-8. https://doi.org/10.1248/bpb.19.834
  81. Roldan ER, Fragio C. Phospholipase A2 activation and subsequent exocytosis in the Ca2+/ionophore-induced acrosome reaction of ram spermatozoa. J Biol Chem 1993;268:13962-70.
  82. Roldan ER. Role of phospholipases during sperm acrosomal exocytosis. Front Biosci 1998;3:D1109-19. https://doi.org/10.2741/A348
  83. Hao CQ, Yang F. Anti-inflammatory effects of total saponins of Panax notoginseng. Zhongguo Yao Li Xue Bao 1986;7:252-5.
  84. Han HJ, Park SH, Koh HJ, Nah SY, Shin DH, Choi HS. Protopanaxatriol ginsenosides inhibit glucose uptake in primary cultured rabbit renal proximal tubular cells by arachidonic acid release. Kidney Blood Press Res 1999;22:114-20. https://doi.org/10.1159/000025916
  85. Kuroda Y, Kaneko S, Yoshimura Y, Nozawa S, Mikoshiba K. Influence of progesterone and GABAA receptor on calcium mobilization during human sperm acrosome reaction. Arch Androl 1999;42:185-91. https://doi.org/10.1080/014850199262841
  86. Melendrez CS, Meizel S. Studies of porcine and human sperm suggesting a role for a sperm glycine receptor/$Cl^-$ channel in the zona pellucida-initiated acrosome reaction. Biol Reprod 1995;53:676-83. https://doi.org/10.1095/biolreprod53.3.676
  87. Somanath PR, Gandhi KK. Expression of membrane associated non-genomic progesterone receptor (s) in caprine spermatozoa. Anim Reprod Sci 2002;74:195-205. https://doi.org/10.1016/S0378-4320(02)00168-9
  88. Kimura T, Saunders PA, Kim HS, Rheu HM, Oh KW, Ho IK. Interactions of ginsenosides with ligand-bindings of GABA(A) and GABA(B) receptors. Gen Pharmacol 1994;25:193-9. https://doi.org/10.1016/0306-3623(94)90032-9
  89. Bratton MR, Duong BN, Elliott S, Weldon CB, Beckman BS, McLachlan JA,. Burow ME. Regulation of ER${\alpha}$-mediated transcription of Bcl-2 by PI3K-AKT crosstalk: implications for breast cancer cell survival. Int J Oncol 2010;37:541-50.
  90. Gingerich S, Krukoff TL. Estrogen in the paraventricular nucleus attenuates L-glutamate-induced increases in mean arterial pressure through estrogen receptor ${\beta}$ and NO. Hypertension 2006;48:1130-6. https://doi.org/10.1161/01.HYP.0000248754.67128.ff
  91. Joy S, Siow RCM, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, et al. The isoflavone equol mediates rapid vascular relaxation: $Ca^{2+}$-independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J Biol Chem 2006;281:27335-45. https://doi.org/10.1074/jbc.M602803200
  92. Khandelwal AR, Hebert VY, Dugas TR. Essential role of ER-alpha-dependent NO production in resveratrol-mediated inhibition of restenosis. Am J Physiol Heart Circ Physiol 2010;299:H1451-8. https://doi.org/10.1152/ajpheart.00369.2010
  93. Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK. Growth factor regulation of estrogen receptor coregulator PELP1 functions via protein kinase A pathway. Mol Cancer Res 2008;6:851-61. https://doi.org/10.1158/1541-7786.MCR-07-2030
  94. Ronda AC, Buitrago C, Boland R. Role of estrogen receptors, PKC and Src in ERK2 and p38 MAPK signaling triggered by $17{\beta}-estradiol$ in skeletal muscle cells. J Steroid Biochem Mol Biol 2010;122:287-94. https://doi.org/10.1016/j.jsbmb.2010.05.002
  95. Wang W, Jiang D, Zhu Y, Liu W, Duan J, Dai S. Relaxing effects of phytoestrogen $\alpha$-zearalanol on rat thoracic aorta rings in vitro. Chin J Physiol 2009;52:99-105.
  96. Zhang H, Zhou Q, Li X, Zhao W, Wang Y, Liu H, Li N. Ginsenoside Re promotes human sperm capacitation through nitric oxide-dependent pathway. Mol Reprod Dev 2007;74:497-501. https://doi.org/10.1002/mrd.20583
  97. Ded L, Dostalova P, Dorosh A, Dvorakova-Hortova K, Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reprod Biol Endocrinol 2010;8:87. https://doi.org/10.1186/1477-7827-8-87
  98. Aquila S, Sisci D, Gentile M, Middea E, Catalano S, Carpino A, Rago V, Ando S. Estrogen receptor (ER)alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway. J Clin Endocrinol Metab 2004;89:1443-51. https://doi.org/10.1210/jc.2003-031681
  99. Bragado MJ, Aparicio IM, Gil MC, Garcia-Marin LJ. Protein kinases A and C and phosphatidylinositol 3 kinase regulate glycogen synthase kinase-3A serine 21 phosphorylation in boar spermatozoa. J Cell Biochem 2010;109:65-73.
  100. Benzoni E, Minervini F, Giannoccaro A, Fornelli F, Vigo D, Visconti A. Influence of in vitro exposure to mycotoxin zearalenone and its derivatives on swine sperm quality. Reprod Toxicol 2008;25:461-7. https://doi.org/10.1016/j.reprotox.2008.04.009
  101. Minervini F, Lacalandra GM, Filannino A, Nicassio M, Visconti A, Dell'Aquila ME. Effects of in vitro exposure to natural levels of zearalenone and its derivatives on chromatin structure stability in equine spermatozoa. Theriogenology 2010;73:392-403. https://doi.org/10.1016/j.theriogenology.2009.09.023
  102. Ballachey BE, Miller HL, Jost LK, Evenson DP. Flow cytometry evaluation of testicular and sperm cells obtained from bulls implanted with zeranol. J Anim Sci 1986;63:995-1004. https://doi.org/10.2527/jas1986.633995x
  103. Minervini F, Maritato F, Minoia P, Visconti A. Toxic effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17b-estradiol levels in mural granulosa cell cultures. Toxicol Vitr 2001;15:489-95. https://doi.org/10.1016/S0887-2333(01)00068-6
  104. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 2000;150:41-8. https://doi.org/10.1016/S0304-3835(99)00369-9
  105. Pearce PT, Zois I, Wynne KN, Funder JW. Panax ginseng and Eleuthrococcus senticosus extracts-in vitro studies on binding to steroid receptors. Endocrinol Jpn 1982;29:567-73. https://doi.org/10.1507/endocrj1954.29.567
  106. Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Kim HS, Kim DH, Bae SC, Hyun JW. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. Int J Oncol 2013;43:1907-14. https://doi.org/10.3892/ijo.2013.2129

Cited by

  1. Zearalenone (ZEN) disrupts the anti-inflammatory response of bovine oviductal epithelial cells to sperm in vitro vol.74, pp.None, 2017, https://doi.org/10.1016/j.reprotox.2017.09.012
  2. Beneficial effects of Cirsium japonicum var. maackii on menopausal symptoms in ovariectomized rats vol.9, pp.4, 2016, https://doi.org/10.1039/c7fo01258f
  3. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-32006-z
  4. Ginseng Nanoparticles Protect Against Methotrexate-Induced Testicular Toxicity in Rats vol.9, pp.None, 2016, https://doi.org/10.32527/2019/101397
  5. Detoxification Strategies for Zearalenone Using Microorganisms: A Review vol.7, pp.7, 2016, https://doi.org/10.3390/microorganisms7070208
  6. Sperm parameters quality and reproductive effects of methanolic extract ofAlchornea cordifolialeaves on senescent male rats vol.51, pp.9, 2019, https://doi.org/10.1111/and.13359
  7. Protective Potential of Ginseng and/or Coenzyme Q10 on Doxorubicin-induced Testicular and Hepatic Toxicity in Rats vol.9, pp.1, 2016, https://doi.org/10.3889/oamjms.2021.7063
  8. Therapeutic importance of Zishen Yutai Pill on the female reproductive health: A review vol.281, pp.None, 2016, https://doi.org/10.1016/j.jep.2021.114523
  9. Zearalenone interferes with the sperm-triggered inflammation in the bovine uterus in vitro: Negative impact on sperm motility and survival vol.107, pp.None, 2016, https://doi.org/10.1016/j.reprotox.2021.12.001