References
- B. Petroleum, BP Statistical Review of World Energy 2015, London.
- C. Honsberg, C. Bowden, PVCDROM. (http://www.pveducation.org/pvcdrom)
- M. A. Green et al., Solar cell efficiency tables (version 47), Prog. Photovolt: Res. Appl. 24, 3-11, 2016. (http://www.nrel.gov/ncpv/images/efficiency_chart.jpg) https://doi.org/10.1002/pip.2728
- P. T. Chiu et al., Continued progress on direct bonded 5J space and terrestrial cells, Proc. 40th IEEE PVSC, June 2014.
- Press Release. Fraunhofer Institute for solar energy systems, 1 December 2014. (http://www.ise.fraunhofer.de/en)
- M. Bosi and C. Pelosi, The potential of III-V semiconductors as terrestrial photovoltaic devices, Prog. Photovolt: Res. Appl. 15, 51-68, 2007. https://doi.org/10.1002/pip.715
- H. Cotal et al., III-V multijunction solar cells for concentrating photovoltaics, Energy Environ. Sci. 2, 174-192, 2009. https://doi.org/10.1039/B809257E
- K. A. W. Horowitz et al., A Bottom-up Cost Analysis of a High Concentration PV Module, CPV-11, NREL, 2015.
- H. Lerchenmuller, Enhanced commercial attractiveness of CPV, CPV-10, April 2014.
- C. W. Cheng et al., Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nat. Commun. 4, 1577, 2013. https://doi.org/10.1038/ncomms2583
- http://www.altadevices.com/wp-content/uploads/2015/05/single_cell.pdf.
- M. Woodhouse et al., A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon, NREL, PR-6A20-60126, 2014.