DOI QR코드

DOI QR Code

Na+/K+-ATPase Alpha Subunit in the Monogonont Rotifer, Brachionus koreanus: Molecular Cloning and Response to Different Salinity

  • Kim, Hokyun (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Lim, Bora (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Kim, Byung-Do (Department of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Lee, Young-Mi (Department of Life Science, College of Natural Sciences, Sangmyung University)
  • Received : 2016.05.10
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

$Na^+/K^+$-ATPase is a membrane protein and plays a key role in osmotic regulation in living organisms. In the present study, a cDNA sequence encoding the $Na^+/K^+$-ATPase alpha subunit from the monogonont rotifer, Brachionus koreanus was cloned by rapid amplification of cDNA ends technique. To investigate the role of this enzyme in osmotic stress, enzymatic activities of $Na^+/K^+$-ATPase were measured after exposure to different salinities for 48 h. The full-length Bk $Na^+/K^+$-ATPase cDNA was 3069 bp-long, encoding a 1022-amino acid polypeptide. Bk $Na^+/K^+$-ATPase possesses eight membrane spanning regions and five conserved domains. Phylogenetic analysis showed that Bk $Na^+/K^+$-ATPase had high identity with those of other species, and was closely clustered with other Brachionus sp. These findings indicate that this protein was conserved both structurally and functionally. B. koreanus $Na^+/K^+$-ATPase activity was stimulated in both hyposaline (6 psu) and hypersaline (32 psu) conditions, suggesting that this protein may play a role in osmoregulation. This study would provide better understanding of the physiology of B. koreanus and this enzyme may be useful as a molecular marker for evaluation of osmotic stress in aquatic environment.

Keywords

References

  1. Barwe SP, G Anilkumar, SY Moon, Y Zheng, JP Whitelegge, SA Rajasekaran and AK Rajasekaran. 2005. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 16:1082-1094. https://doi.org/10.1091/mbc.E04-05-0427
  2. Blanco G and RW Mercer. 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275:F633-F650.
  3. Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 7:248-254.
  4. Brooks SJ and CL Mills. 2003. The effect of copper on osmoregulation in the freshwater amphipod Gammarus Pulex. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 135:527-537. https://doi.org/10.1016/S1095-6433(03)00111-9
  5. Colina C, JJC Rosenthal, JA DeGiorgis, D Srikumar, N Iruku and M Holmgren. 2007. Structural basis of $Na^{+}/K^{+}$-ATPase adaptation to marine environments. Nat. Struct. Mol. Biol. 14:427-431. https://doi.org/10.1038/nsmb1237
  6. Dahms HU, A Hagiwara and J-S Lee. 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat. Toxicol. 101:1-12. https://doi.org/10.1016/j.aquatox.2010.09.006
  7. Deane EE and NY Woo. 2005. Cloning and characterization of sea bream $Na^{+}-K^{+}$-ATPase alpha and beta subunit genes: in vitro effects of hormones on transcriptional and translational expression. Biochem. Biophys. Res. Commun. 331: 1229-1238. https://doi.org/10.1016/j.bbrc.2005.04.038
  8. Geering K. 2001. The functional role of beta subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33: 425-438. https://doi.org/10.1023/A:1010623724749
  9. Geering K. 2008. Functional roles of $Na^{+}$, $K^{+}$-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 17:526-532. https://doi.org/10.1097/MNH.0b013e3283036cbf
  10. Genova JL and RG Fehon. 2003. Neuroglian, gliotactin, and the $Na^{+}/K^{+}$ ATPase are essential for septate junction function in Drosophila. J. Cell Biol. 161:979-989. https://doi.org/10.1083/jcb.200212054
  11. Gomez A and TW Snell. 1996. Sibling species and cryptic speciation in the Brachionus plicatilis species complex (Rotifera). J. Phylogenetics Evol. Biol. 9:953-964.
  12. Hagiwara A, T Kotani, TW Snell, M Assava-Aree and K Hirayama. 1995. Morphology, reproduction, genetics, and mating behavior of small, tropical marine Brachionus strains (Rotifera). J. Exp. Mar. Biol. Ecol. 194:25-37. https://doi.org/10.1016/0022-0981(95)00081-X
  13. Hasler U, X Wang, G Crambert, P Beguin, F Jaisser, JD Horisberger and K Geering. 1998. Role of beta-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na, K-ATPase. J. Biol. Chem. 273:30826-30835. https://doi.org/10.1074/jbc.273.46.30826
  14. Holliday CW. 1990. Salinity-induced changes in branchial $Na^{+}/K^{+}$ ATPase activity and transepithelial potential difference in the brine shrimp Artemia salina. J. Exp. Biol. 151: 279-296.
  15. Hwang U-G, E-Y Min and J-C Kang. 2012. Effect of salinity on survival and growth of 3 Gobiidae. Korean J. Envrion. Biol. 30:9-14.
  16. Jensen MK, SS Madsen and K Kristiansen. 1998. Osmoregulation and salinity effects on the expression and activity of $Na^{+},\,K^{+}$-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. A Ecol. Genet. Physiol. 282:290-300.
  17. Jorge MB, VL Loro, A Bianchini, CM Wood and PL Gillis. 2013. Mortality, Bioaccumulation and Physiological Responses in Juvenile Freshwater Mussels (Lampsilis Siliquoidea) Chronically Exposed to Copper. Aquat Toxicol. 126:137-147. https://doi.org/10.1016/j.aquatox.2012.10.014
  18. Kaplan JH. 2002. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71:511-535. https://doi.org/10.1146/annurev.biochem.71.102201.141218
  19. Kim CW and HS Kang. 2015. The expression of Hsp70 and GST genes in Mytilus coruscus exposed to water temperature and salinity. Korean J. Environ. Biol. 33:450-458. https://doi.org/10.11626/KJEB.2015.33.4.450
  20. Kim H, B Lim, B-D Kim and Y-M Lee. 2016. Effects of heavy metals on transcription and enzyme activity of $Na^{+}/K^{+}$-ATPase in the monogonont rotifer, Brachionus koreanus. Toxicol. Environ. Health. Sci. 8: 114-120. https://doi.org/10.1007/s13530-016-0269-x
  21. Lima AG, JC McNamara and WR Terra. 1997. Regulation of hemolymph osmolytes and gill $Na^{+}/K^{+}$-ATPase activities during acclimation to saline media in the fresh water shrimp Macrobrachium olfersii (Wiegmann, 1836) (Decapoda, Palaemonidae). J. Exp. Mar. Biol. Ecol. 215:81-91. https://doi.org/10.1016/S0022-0981(97)00016-6
  22. Lind U1, M Alm Rosenblad, AL Wrange, KS Sundell, PR Jonsson, C Andre, J Havenhand and A Blomberg. 2013. Molecular characterization of the ${\alpha}-subunit$ of $Na^{+}/K^{+}$ ATPase from the euryhaline barnacle Balanus improvisus reveals multiple genes and differential expression of alternative splice variants. PLoS One. 8:e77069. https://doi.org/10.1371/journal.pone.0077069
  23. Lingrel JB and T Kuntzweiler. 1994. $Na^{+},\,K^{+}$-ATPase. J. Biol. Chem. 269:19659-19662.
  24. Lowe CD, SJ Kemp, AD Bates and DJS Montagnes. 2005. Evidence that the rofiter Brachionus plicatilis is not an osmoconformer. Mar. Biol. 146:923-929. https://doi.org/10.1007/s00227-004-1501-9
  25. Lucu C and G Flik. 1999. $Na^{+}-K^{+}$-ATPase and $Na^{+}/Ca^{2+}$ exchange activities in gills of hyperregulating Carcinus maenas. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276: R490-R499. https://doi.org/10.1152/ajpregu.1999.276.2.R490
  26. Lucu C, M Devescovi, B Skaramuca and V Kozul. 2000. Gill $Na^{+}$, $K^{+}$-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers: adaptiveness of enzymes from osmoconformity to hyperregulation. J. Exp. Mar. Biol. Ecol. 246:163-178. https://doi.org/10.1016/S0022-0981(99)00179-3
  27. McDonough AA, K Geering and RA Farley. 1990. The sodium pump needs its b-subunit, FASEB J. 4:1598-1605. https://doi.org/10.1096/fasebj.4.6.2156741
  28. Morth JP, BP Pedersen, MS Toustrup-Jensen, TLM Sorensen, J Petersen, JP Andersen, B Vilsen and P Nissen. 2007. Crystal structure of the sodium-potassium pump. Nature 450:1043-1050. https://doi.org/10.1038/nature06419
  29. Noguchi S, K Higashi and M Kawamura. 1990. A possible role of the b subunit of (Na, K)-ATPase in facilitating correct assembly of the a-subunit into the membrane. J. Biol. Chem. 265:15991-15995.
  30. Palmgren MG and KB Axelsen. 1998. Evolution of P-type ATPases. Biochim. Biophys. Acta. 1365:37-45. https://doi.org/10.1016/S0005-2728(98)00041-3
  31. Paul SM, M Ternet, PM Salvaterra and GJ Beitel. 2003. The $Na^{+}/K^{+}$ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130:4963-4974. https://doi.org/10.1242/dev.00691
  32. Saez AG, E Lozano and A Zaldivar-Riveron. 2009. Evolutionary history of Na,K-ATPases and their osmoregulatory role. Genetica 136:479-490. https://doi.org/10.1007/s10709-009-9356-0
  33. Sathapondecha P, S Panyim and A Udomkit. 2014. Molecular characterization of a cDNA encoding red pigment-concentrating hormone in black tiger shrimp Penaeus monodon: Implication of its function in molt and osmoregulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 175:124-130. https://doi.org/10.1016/j.cbpa.2014.06.001
  34. Semple JW, HJ Green and PM Schulte. 2002. Molecular cloning and characterization of two Na/K-ATPase isoforms in Fundulus heteroclitus. Mar. Biotechnol. (NY). 4:512-519. https://doi.org/10.1007/s10126-002-0031-z
  35. Thabet R, J-D Rouault, H Ayadi and V Leignel. 2016. Structural analysis of the a subunit of $Na^{+}/K^{+}$ ATPase genes in invertebrates. Comp. Biochem. Physiol. Part B 196-197:11-18. https://doi.org/10.1016/j.cbpb.2016.01.007
  36. Therien AG and R Blostein. 2000. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279:C541-C566. https://doi.org/10.1152/ajpcell.2000.279.3.C541
  37. Zhu J-K. 2001. Plant salt tolerance. Trends Plant Sci. 6:66-71.