DOI QR코드

DOI QR Code

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 1. Robustness Assessment of Structural Alternatives for the Problem of Urban Floods

도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 1. 도시 홍수 문제 구조적 대안의 내구성 평가

  • Lee, Changmin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jung, Jihyeun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • An, Jinsung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Jae Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Choi, Yongju (Department of Civil and Environmental Engineering, Seoul National University)
  • 이창민 (서울대학교 건설환경공학부) ;
  • 정지현 (서울대학교 건설환경공학부) ;
  • 안진성 (서울대학교 건설환경공학부) ;
  • 김재영 (서울대학교 건설환경공학부) ;
  • 최용주 (서울대학교 건설환경공학부)
  • Received : 2016.04.07
  • Accepted : 2016.06.20
  • Published : 2016.06.30

Abstract

Current cities encounter various types of water problems due to rapid urbanization and climate change. The increasing significance of urban water problems calls for the establishment of resilient alternatives to prevent and minimize social loss that results from these phenomena. As a background research for establishing resilient infrastructures for the mitigation of urban water problems, we evaluated the robustness of structural alternatives for urban flood as a representative case. Combining the robustness index (RI) and the cost index (CI), we suggested the robustness-cost index (RCI) as an indicator of the robustness of structural alternatives, and applied the index to assess the existing infrastructures and structural alternatives (i.e., sewer network expansion, additional storage tank construction, and green roof construction) at a site prone to floods located around Gangnam-station, Seoul, Korea. At a rainfall intensity frequency range of 2 to 20 years, the usage of a storage tank and a green roof showed relatively high RCI value, with a variation of an alternative showing greater RCI between the two depending on the size of design rainfall. For a rainfall intensity frequency of 30 years, installing a storage tank with some green roofing was the most resilient alternative based on the RCI value. We proposed strategies for establishing resilient infrastructures for the mitigation of urban floods by evaluating the robustness of existing infrastructures and selecting optimal structural alternatives with the consideration of scales of design disaster.

도시 내 인구집중과 기후변화로 인해 다양한 형태의 도시 물 문제가 발생한다. 이에 대한 피해 예방과 사회적 손실 최소화를 위해 회복탄력적인 대안 수립이 필요하다. 본 연구는 도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축 전략 수립에 관한 기초연구로서, 대표적인 도시 물 문제 중 하나인 도시홍수를 사례로 하여 구조적 대안의 내구성을 평가하였다. 내구성 평가를 위한 지표로 내구성 지수 (robustness index, RI) 및 비용지수 (cost index, CI)를 결합한 내구성-비용지수 (robustness cost index, RCI)를 제안하고, 이를 강남역 상습침수구역에 적용하여 기존 기반시설과 구조적 대안 (하수관거 확충, 저류조 설치, 옥상녹화)을 평가하였다. 그 결과, 2~20년 빈도의 강우강도범위에서 저류조와 옥상녹화설치가 상대적으로 높은 RCI 값을 나타내었고 두 대안 중 RCI가 보다 높은 대안은 강우강도에 따라 달라지는 경향을 보였다. 30년 빈도 강우강도에 대하여는 저류조와 옥상녹화를 병용 설치하는 대안이 가장 높은 RCI 값을 나타내어 가장 회복탄력적인 대안으로 확인되었다. 최종적으로 재해의 계획규모에 따른 현행 사회기반시설의 내구성 평가 및 최적의 구조적 대안 선택 절차를 수립하여, 도시홍수 문제에 대한 회복탄력적 사회기반시설 구축 전략을 제시하였다.

Keywords

References

  1. Ahn, S.R., Ha, R., Yoon, S.W. and Kim, S.J. 2014. Evaluation of future turbidity water and eutrophication in Chungju-lake by climate change using CE-QUAL-W2. Journal of Korea Water Resources Association 47: 145-159. (in Korean) https://doi.org/10.3741/JKWRA.2014.47.2.145
  2. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A. and von Winterfeldt, D. 2003. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19: 733-752. https://doi.org/10.1193/1.1623497
  3. Chang, S.E. and Shinozuka, M. 2004. Measuring improvements in the disaster resilience of communities. Earthquake Spectra 20: 739-755. https://doi.org/10.1193/1.1775796
  4. Folke, C. 2006. Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change 16: 253-267. https://doi.org/10.1016/j.gloenvcha.2006.04.002
  5. Garmezy, M. 1985. Stress-resistant children: The search for protective factors. Recent Research in Developmental Psychopathology 4: 213-233.
  6. Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  7. Hunter, P.R. 2003. Climate change and waterborne and vector‐borne disease. Journal of Applied Microbiology 94: 37-46. https://doi.org/10.1046/j.1365-2672.94.s1.5.x
  8. Janssen, M.A., John, M.A. and Elinor, O. 2007. Robustness of social-ecological systems to spatial and temporal variability. Society and Natural Resources 20: 307-322. https://doi.org/10.1080/08941920601161320
  9. Johnson, A.C. and Williams, R.J. 2004. A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinyl estradiol at sewage treatment works. Environmental Science & Technology 38: 3649-3658. https://doi.org/10.1021/es035342u
  10. KFEM. 2013. Review Report of Publications of Gangnam-dearo Sewer Network Design. Korean Federation for Environmental Movement, Seoul, Korea. (in Korean)
  11. Kim, B.I., Shin, S.C. and Kim, D.Y. 2014a. Resilience assessment of dam's flood-control service. Journal of the Korean Society of Civil Engineers 34: 1919-1924. (In Korean) https://doi.org/10.12652/Ksce.2014.34.6.1919
  12. Kim, H.S., Choi, J.Y. and Shin, E.H. 2014b. Economic analysis based on the type of green roof initiatives: the case of Jung-gu Seoul. Journal of the Architectural Institute of Korea Planning & Design 30(10): 159-167. (in Korean) https://doi.org/10.5659/JAIK_PD.2014.30.10.159
  13. Kim, T. H., Kim, H.J. and Lee, K.J. 2011. The concept and functional objectives of the urban resilience for disaster management. Journal of the Korean Society of Safety 26: 65-70. (in Korean)
  14. KMOE. 2012. Drainage System Maintenance Plan against Urban Flood. National Policy Coordination Meeting. Korean Ministry of Environment, Sejong, Korea. (in Korean)
  15. Lee, E.S., Noh, C.W. and Sung, J.S. 2014. Meaning structure of green infrastructure - a literature review about definitions. Journal of the Korean Institute of Landscape Architecture 42: 65-76. (in Korean) https://doi.org/10.9715/KILA.2014.42.2.065
  16. Nam, M.A., Jang, D.H. and Kim, H.S. 2013. A study on runoff water reduction effects according to shapes of formation of artificial soil green area in multi-housing complex. Journal of the Korea Institute of Ecological Architecture and Environment 13: 9-15 (in Korean) https://doi.org/10.12813/kieae.2013.13.1.009
  17. Peck, S.W. and M. Kuhn. 2003. Design Guidelines for Green Roofs. Ontario Association of Architects, Ottawa, Canada.
  18. Rose, A. 2007. Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards 7: 383-398. https://doi.org/10.1016/j.envhaz.2007.10.001
  19. Rutter, M. 1987. Psychosocial resilience and protective mechanisms. American Journal of Orthopsychiatry 57: 316-331. https://doi.org/10.1111/j.1939-0025.1987.tb03541.x
  20. Seoul. 2007. System Type Decision & Management Manual for Green Roof Building. Seoul Metropolitan Government, Seoul, Korea. (in Korean)
  21. Seoul. 2015. 2020 Seoul Metropolitan City Master Plan for Water Environment Management. Seoul Metropolitan Government, Seoul, Korea. (in Korean)
  22. Shin, S.J., Jung, D.Y. and Hwang, E.H. 2009. Concept analysis of resilience in patients with cardiovascular diseases. Journal of Korean Academy of Nursing 39: 788-795. https://doi.org/10.4040/jkan.2009.39.6.788
  23. SIWI. 2015. Water for Development: Charting a Water Wise Path. Stockholm International Water Institute, Stockholm, Sweden.
  24. Timmerman, P. 1981. Vulnerability Resilience and Collapse of Society: A Review of Models and Possible Climatic Applications. Institute for Environmental Studies, University of Toronto, Toronto, Canada.
  25. Vugrin, E.D. and Camphouse, R.C. 2011. Infrastructure resilience assessment through control design. International Journal of Critical Infrastructures 7: 243-260. https://doi.org/10.1504/IJCIS.2011.042994
  26. Vugrin, E.D., Drake, E.W., Mark, A.E. and Camphouse, R.C. 2010. A framework for assessing the resilience of infrastructure and economic systems. In, Gopalakrishnan, K. and Peeta, S. (eds.), Sustainable and Resilient Critical Infrastructure Systems, Springer, Berlin Heidelberg, New Mexico, USA. pp. 77-116.
  27. Woo, H.S. 2011. Prevention of urban flood due to climate change. Journal of Civil Engineering 59: 5-7. (in Korean)
  28. Yu, S.Y., Kim, S.W., Park, K.H., Oh, C.W., Park, D.K. and Kim, C.Y. 2012. Quantitative resilience analysis of Fiji to cyclones. Journal of the Korean Society of Hazard Mitigation 12: 55-63. (In Korean) https://doi.org/10.9798/KOSHAM.2012.12.2.055

Cited by

  1. Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 2. Robustness Assessment of Structural Alternatives for the Problems of Water Pollution vol.3, pp.3, 2016, https://doi.org/10.17820/eri.2016.3.3.182
  2. Creating a Sustainable City with Low Impact Development and Green Solutions vol.3, pp.2, 2016, https://doi.org/10.17820/eri.2016.3.2.077
  3. 회복탄력성을 고려한 기상 시나리오별 가뭄 용수 공급방안: 나주호를 중심으로 vol.60, pp.5, 2016, https://doi.org/10.5389/ksae.2018.60.5.115
  4. 미래 수요예측을 통한 제주도 농업용수 회복탄력적 공급 방안에 관한 연구 vol.62, pp.3, 2016, https://doi.org/10.5389/ksae.2020.62.3.071