DOI QR코드

DOI QR Code

An Empirical Study for Cost Saving Effect Analysis When Using Seismic Reinforcing Bar

내진 보강용 철근 사용 시 비용 절감 효과 분석을 위한 실증적 연구

  • Lee, Jong-Sik (Dept. of Architectural Engineering, Songwon University)
  • 이종식 (송원대학교 건축공학과)
  • Received : 2016.03.23
  • Accepted : 2016.05.04
  • Published : 2016.07.01

Abstract

Due to the enlargement and high-rise of reinforced concrete structure, the application of high functional material is required. However, high-strength bar is recently introduced to the country and the material is insufficient to measure the variation of quantity of rebar quantitatively when using high-strength bar. For these reasons, this study is to provide useful data in cost decision making when applying high-strength bar at a stage of architectural project planning. For residence-commerce complex buildings, we set up six types of conditions such as in case of using only rebar, in case of using only high-strength bar, in case of using rebar mixed with high-strength bar and so on. With the standard of study model 1 that applies only SD400 regardless of rebar diameter, the analyzed result of rebar variation and the cost change of construction in other study model is as follows. When the rebar amount and cost in study model I was 100%, each ratio was 88.3% and 90.5% in study model II, 80.2% and 83.4% in study model III, 91.9% and 93.5% in study model IV, 88.9% and 87.7% in study model V and 82.4% and 85.5% in study model VI. Therefore, in case of rebar amount and construction cost, study model III was evaluated as the best that was applied only SD600.

철근콘크리트 구조물의 대형화, 고층화로 인해 고기능 재료의 적용이 요구되고 있다. 하지만 고장력 철근은 국내에 도입된 지 얼마되지 않고, 고장력 철근의 사용 시 철근 물량의 주상 복합 정량적으로 판단하기 위한 자료가 부족하다. 이에 본 연구는 건축 프로젝트 계획 과정에서 고장력 철근 적용 시 비용 측면의 의사 결정에서 활용할 수 있는 데이터를 제공하기 위하여, 주상 복합 건축물을 대상으로 일반 철근만 사용한 경우, 고장력 철근만을 사용한 경우, 일반 철근과 고장력 철근을 혼용한 경우 등 6가지 조건을 설정하고, 철근의 직경에 관계없이 SD400 철근만을 적용한 연구모델 1을 기준으로, 다른 연구모델의 주상 복합 주상 복합 및 공사비 변화를 분석한 결과, 연구모델 I의 주상 복합과 공사비 100%로 하였을 때, 연구모델 II는 각각 88.3%와 90.5%, 연구모델 III는 각각 80.2%와 83.4%, 연구모델 IV는 각각 91.9%와 93.5%, 연구모델 V는 각각 88.9%와 87.7%, 연구모델 VI는 각각 82.4%와 85.5%의 값을 보였다. 따라서 주상 복합과 공사비의 모두 SD600을 적용한 연구모델 III가 가장 우수한 것으로 평가되었다.

Keywords

References

  1. ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (ACI 318-08), American Concrete Institute, Farmington Hills, Detroit, 2008. pp. 473-474.
  2. Arslan, G., and Cihanli, E. (2010), Curvature Ductility Prediction of Reinforced High-Strength Concrete Beam Sections, Journal of Civil Engineering and Management, 16(4), 462-470. https://doi.org/10.3846/jcem.2010.52
  3. Bai, Z. Z., and Au, F. T. K. (2011), Flexural Ductility Design of High-Strength Concrete Beams, The Structural Design of Tall Special Buildings, 521-542.
  4. European Committee for Standardization Euro code 2 (2004), Design of Concrete Structures, Part1-1, General Rules and Rules for Buildings (EN 1992-1-1:2004), European Committee for Standardization, Brussels, 227-228.
  5. Jang, I. Y., Park, H. G., Kim, S. S., Kim, J. H., and Kim, Y. G. (2008), On the Ductility of High-Strength Concrete Beams, International Journal of Concrete Structures and Materials, 2(2), 115-122. https://doi.org/10.4334/IJCSM.2008.2.2.115
  6. Kim, J. Y., and Kim, G. H. (2008), A Study on Economic Evaluation Method of Coupler Splice for High Strength(SD500) Reinforcement, Korean Journal of Construction Engineering and Management, 8(2), 136-145.
  7. Korea Agency for Technology and Stand (2011), Steel bars for concrete reinforcement, KS D 3504, 1-3.
  8. Korea Concrete Institute (2012), Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 598-599.
  9. Kwon, S. B., and Yoon, Y. S. (2002), Flexural Behavior of RC Beams using High-Strength Reinforcement for Ductility Assesment, Journal of Korean Society of Hazard Mitigation, 2(1), 119-126.
  10. Lee, J. H. (1994), Analytical Study on Ductility Index of Reinforced Concrete Flexural Members, Journal of The Korean Society of Civil Engineers, 14(3), 391-402.
  11. Lee, J. L. (2013), Evaluation on Moment-Curvature Relations and Curvature Ductility Factor of Reinforced Concrete Beams with High Strength Materials, Journal of the Korea Concrete Institute, 25(3), 283-294. https://doi.org/10.4334/JKCI.2013.25.3.283
  12. Lee, S. Y., Lee, H. C., Park, C. S., Woo, K. M., and Suh, Y. T. (2010), Development of high-strength in 600, 700, 800 MPa class of yield strength and seismic resistant steel deformed bar, Magazine of the Korea Concrete Institute, 22(5), 28-36. https://doi.org/10.22636/MKCI.2010.22.5.28
  13. Megge, L. M., Fenwick, R. C., and Amso, N. (2003), Seismic Performance of Internal Beam-Column Joints with 500 Grade Reinforcement, Pacific Conference on Earthquake Engineering, Paper no. 100, 1-10.
  14. Moon, D. Y. (2013), Flexural Behavior of Concrete Beams Reinforced with High-Strength Steel Bars, Journal of Korean Society of Hazard Mitigation, 13(6), 107-113. https://doi.org/10.9798/KOSHAM.2013.13.6.107
  15. Oh, B. H., Cho, K. H., and Park, D. K. (2005), An Experimental Study on the Seismic Behavior of Solid RC Piers Using High Strength Concrete and High Strength Rebars, Journal of the Korea Concrete Institute, 17(1), 27-34. https://doi.org/10.4334/JKCI.2005.17.1.027