DOI QR코드

DOI QR Code

The Effects of WO3 Nanoparticles Addition to the TiO2 Photoelectrode in Dye-Sensitized Solar Cells

  • Vu, Hong Ha Thi (Department of Nano Energy Engineering and BK21 PLUS Nanoconvergence Technology Division, Pusan National University) ;
  • Hwang, Yoon-Hwae (Department of Nano Energy Engineering and BK21 PLUS Nanoconvergence Technology Division, Pusan National University) ;
  • Kim, Hyung-Kook (Department of Nano Energy Engineering and BK21 PLUS Nanoconvergence Technology Division, Pusan National University)
  • 투고 : 2016.04.29
  • 심사 : 2016.05.25
  • 발행 : 2016.06.30

초록

Increasing the efficiency of dye-sensitized solar cells (DSSCs) by the fabrication of new photoelectrodes (PEs) is an important challenge. This study examined the photovoltaic parameters of DSSCs composed of a $TiO_2$ PE with $WO_3$ nanoparticles (NPs). A number of PEs with the same thickness but different concentrations of $WO_3$ NPs in the $TiO_2PE$ were prepared. The morphology and structural properties of the prepared PEs were examined by field-emission scanning electron microscopy and X-ray diffraction, respectively. The effects of the $WO_3$ NPs mixing concentration on the efficiency of DSSCs were investigated under simulated solar light irradiation.

키워드

참고문헌

  1. O'Regan, B., Gratzel, M., "A low-cost high-efficiency solar cell based on dye sensitized colloidal $TiO_2$ films," Nature, Vol. 353, pp. 737-740, 1991. https://doi.org/10.1038/353737a0
  2. Sakai, N., Miyasaka, T., Murakami,T. N., "Efficiency enhancement of ZnO-based Dye-sensitized solar cells by low-temperature $TiCl_4$ treatment and dye optimization," J. Phys. Chem. C, Vol. 117, No. 21, pp. 10949-10956, 2013. https://doi.org/10.1021/jp401106u
  3. Lee, J. H., Park, N. G., Shin, Y. J., "Nano-grain $SnO_2$ electrodes for high conversion efficiency $SnO_2$-DSSC," Solar Energy Materials& Solar cells, Vol. 95, pp. 179-183, 2011. https://doi.org/10.1016/j.solmat.2010.04.027
  4. Kay, A., Gratzel, M., "dye-sensitized core-shell nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide," Chem. Mater., Vol. 14, No. 7, pp. 2930-2935, 2002. https://doi.org/10.1021/cm0115968
  5. Le Viet, A., Jose, R., Reddy, M.V., Chowdari, B. V. R., Ramakrisna, S., "$Nb_2O_5$ Photoelectrodes for Dye-Sensitized Solar Cells: Choice of the Polymorph," J. Phys. Chem. C, Vol. 114, No. 49, pp. 21795-21800, 2010. https://doi.org/10.1021/jp106515k
  6. Paulsson, H., Kloo, L., Hagfeldt, A., Boschloo, G., "Electron transport and recombination in dye-sensitized solar cells with ionic liquid electrolytes," Journal of Electroanalytical Chemistry, Vol. 586, pp. 56-61, 2006. https://doi.org/10.1016/j.jelechem.2005.09.011
  7. Klein, C., Nazeeruddin, M. K., Liska, P., Censo, D. D., Hirata, N., Palomares, E., Durrant, J. E., Gratzel, M., "Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity," Inorg. Chem., Vol 44, pp 178-180, 2005. https://doi.org/10.1021/ic048810p
  8. Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baer, R., Mueller, E., Liska, P., Vlachopoulos, N., Gratzel, M., "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," J. Am. Chem. Soc., Vol. 115, pp. 6382-6390, 1993. https://doi.org/10.1021/ja00067a063
  9. Liu, X., Wang, F., Wang, Q., Nanostructure-based $WO_3$ photoanodes for photoelectrochemical watersplitting, Phys. Chem. Chem. Phys., Vol. 14, pp. 7894-7911, 2012. https://doi.org/10.1039/c2cp40976c
  10. Cristino, V., Caramori, S., Argazzi, R., Meda, L., Marra, G. L., Bignozzi, C. A., "Efficient Photoelectrochemical Water Splitting by Anodically Grown $WO_3$ Electrodes," Langmuir, Vol. 27, No. 11, pp. 7276-7284, 2011. https://doi.org/10.1021/la200595x
  11. Wang, F., Valentin, C. D., Pacchioni, G., "Rational band gap engineering of $WO_3$ photocalalyst for visible water splitting," Chemcatchem, Vol. 4, pp. 476-478, 2012. https://doi.org/10.1002/cctc.201100446
  12. Szilagyi, I. M., Forizs,B., Rosseler, O., Szegedi, A., Nemeth, P., Kiraly, P., Tarkanyi, G, Vajna, B., Varga-Josepovits, K., Laszlo, K., Toth, A. L., Baranyai, P., Leskela, M., "$WO_3$ photocatalysts: Influence of structure and composition," Journal of Catalysis, Vol. 294, pp. 119-127, 2012. https://doi.org/10.1016/j.jcat.2012.07.013
  13. Yong, S. M., Nikolay, T., Ahn, B. T., Kim, D. K., "One-dimensional $WO_3$ nanorods as photoelectrode for dye-sensitized solar cell," J. Alloys Compd., Vol. 547, pp. 113-117, 2013. https://doi.org/10.1016/j.jallcom.2012.08.124
  14. Zheng, H., Tachibana, Y., Kalantar-zadeh, K., Dye-sensitized solar cells based on $WO_3$," Langmuir, Vol. 26, No. 24, pp. 19148-19152, 2010. https://doi.org/10.1021/la103692y
  15. Shaikh, S. F., Kalanur, S. S., Mane, R. S., Joo, O. S., "Monoclinic $WO_3$ nanorods-rutile $TiO_2$ nanoparticles core-shell interface for efficient DSSCs," Dalton Trans., Vol. 42, pp. 10085-10088, 2013. https://doi.org/10.1039/c3dt50728a
  16. Siciliano, T., Tepore, A., Micocci, G., Serra, A., Manno, D., Filippo, E., "$WO_3$ gas sensors prepared by thermal oxidization of tungsten," Sensors and Actuators B: Chemical, Vol. 133, pp. 321-326, 2008. https://doi.org/10.1016/j.snb.2008.02.028
  17. Zeng, J., Hu, M., Wang, W., Chen, H., Qin, Y., "$NO_2$-sensing properties of porous $WO_3$ gas sensor based on anodized sputtered tungsten thin film," Sensors and Actuators B: Chemical, Vol. 161, pp. 447-452, 2012. https://doi.org/10.1016/j.snb.2011.10.059
  18. Papaefthimiou, S., Leftheriotis, G., Yianolis, Y., "Advanced electrochromic devices based on $WO_3$ thin films," Electrochimia Acta, Vol. 46, pp. 2145-2150, 2001. https://doi.org/10.1016/S0013-4686(01)00393-0
  19. Liang, L., Zhang, J., Zhou, Y., Xie, J., Zhang, X., Guan, M., Pan, B., Xie, Y., "High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by $WO_3{\cdot}2H_2O$ ultrathin nanosheets," Scientific reports, Vol. 3, Acticle number 1936, pp. 1-8, 2013.
  20. Vu, T. H. H., Atabaev, T. S., Ahn, J. Y., Nguyen, N. D., Kim, H. K., Hwang, Y. H., "Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency," J. Mater. Chem. A, Vol. 3, pp. 11130-11136, 2015. https://doi.org/10.1039/C5TA02363G
  21. Yang, B., Zhang, Y., Drabarek, E., Barnes, P. R. F., and Luca, V., "Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control," Chemistry of Materials, Vol. 19, No. 23, pp. 5664-5672, 2007. https://doi.org/10.1021/cm071603d
  22. Zhang, H., Chen, G., Bahnemann, D. W., "Photoelectrocatalytic materials for environmental application," J. Mater. Chem., Vol. 19, pp. 5089-5121, 2009 https://doi.org/10.1039/b821991e
  23. Shaban, A. Y., Khan, S. U. M., "Photoresponse of Visible Light Active CM-n-$TiO_2$, HM-n-$TiO_2$, CM-n-$Fe_2O_3$, and CM-p-$WO_3$ towards Water Splitting Reaction," Hindawi publishing corporation, Internatinal Journal of Photoenergy, Vol. 2012, article ID 749135, pp. 1-20, 2012.
  24. Higashimoto, S., Sakiyama, M., Azuma, M., "Photoelectrochemical properties of hybrid $WO_3/TiO_2$ electrode. Effect of structure of $WO_3$ on charge separation behavior," Thin Solid Film, Vol. 503, pp. 201-206, 2006. https://doi.org/10.1016/j.tsf.2005.11.110