참고문헌
-
Bahari, R.A., Ali Abssaspour, R., Pahlavi, P. (2014) Prediction of
$PM_{2.5}$ concentrations using temperature inversion effects based on an artificial neural network, The ISPRS international conference of Geospatial information research, 15-17 November, Tehran, Iran. - Caputo, M., Gimenez, M., Schlamp, M. (2003) Intercomparison of atmospheric dispersion models. Atmospheric Environment 37, 2435-2449. https://doi.org/10.1016/S1352-2310(03)00201-2
- Chung, K.L., Farid AitSahlia (2003) Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance, Springer Undergraduate Texts in Mathematics and Technology, ISSN 0172-6056.
- Cohen, S., Intrator, N. (2002) Automatic model selection in a hybrid perceptron/radial network; Information Fusion. Special Issue on Multiple Experts 3(4), 259-266.
-
Deng, X., Zhang, F., Rui, W., long, F., Wang, L., Feng, Z., Chen, D., Ding, W. (2013)
$PM_{2.5}$ -induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro 27(6), 1762-1770. https://doi.org/10.1016/j.tiv.2013.05.004 - Dong, G.H., Zhang, P., Sun, B., Zhang, L., Chen, X., Ma, N. (2012) Long term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12 year population - based retrospective cohort study. Respiration 84(5), 360-368. https://doi.org/10.1159/000332930
- Eleuteri, A., Tagliaferri, R., Milano, L. (2005) A novel information geometric approach to variable selection in MLP networks. Neural Network 18(10), 1309-1318. https://doi.org/10.1016/j.neunet.2005.01.008
-
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J. (2015) Artificial neural network forecasting of
$PM_{2.5}$ pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment 107, 118-128. https://doi.org/10.1016/j.atmosenv.2015.02.030 - Goss, C.H., Newsom, S.A., Schildcrout, J.S., Sheppard, L., Kaufman, J.D. (2004) Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 169(7), 816-821. https://doi.org/10.1164/rccm.200306-779OC
- Hambli, R. (2011) Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering 27(4), 461-475. https://doi.org/10.1002/cnm.1413
- Hanna, S.R., Paine, R., Heinold, D., Kintigh, E., Baker, D. (2007) Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST 3 in the Houston ship channel area. Journal of Applied Meteorology and Climatology 46, 1372-1382. https://doi.org/10.1175/JAM2540.1
- Harsham, D.K., Bennett, M. (2008) A sensitivity study of validation of three regulatory dispersion models. American Journal of Environmental Sciences 4(1), 63-76. https://doi.org/10.3844/ajessp.2008.63.76
- Haykin, S. (1999) Neural networks: a comprehensive foundation. (2nd ed.) Upper Saddle River, New Jersey: Prentice Hal.
- Jones, R.M., Nicas, M. (2014) Benchmarking of a Markov multizone model of contaminant transport. Annals of Occupational Hygiene 58(8), 1018-1031. https://doi.org/10.1093/annhyg/meu055
- Kohavi, R., John, G.H. (1997) Wrappers for feature subset selection. Artificial Intelligence 97, 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
- Kohohen, T. (1984) Self-organization and associative memory. New York: Springer-Verlag.
- Krause, P., Boyle, D.P., Base, F. (2005) Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
-
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Li, P., Xin, J.Y., Wang, Y.S., Wang, S.G., Li, G.X., Pan, X.C., Liu, Z.R., Wang, L.L. (2015) Reinstate regional transport of
$PM_{2.5}$ as a major cause of severe haze in Beijing. Proceeding of the National Academy of Sciences of the United States of America 112, E2739-E2740. https://doi.org/10.1073/pnas.1502596112 - Kuncheva, L. (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York, USA.
- Kurt, A., Gulbagci, B., Karaca, F., Alagha, O. (2008) An online air pollution forecasting system using neural networks. Environment International 34, 592-598. https://doi.org/10.1016/j.envint.2007.12.020
- Logofet, D.O., Lensnaya, E.V. (2000) The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling 2(3), 285-298.
- Nicas, M. (2014) Markov modeling of contaminant concentrations in indoor air. American Journal of Environmental Sciences, 61(4), 484-491.
-
Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G. (2003) Extensive evaluation of neural network models for the prediction of
$NO_2$ and$PM_{10}$ concentrations, compared with a deterministic modeling system and measurements in central Helsinki. Atmospheric Environment 37, 4539-4550. https://doi.org/10.1016/S1352-2310(03)00583-1 - Niska, H., Heikkinen, M., Kolehmainen, M. (2006) Genetic algorithms and sensitivity analysis applied to select inputs of a multi-layer perceptron for the prediction of air pollutant time-series. Chapter Intelligent data engineering and automated learning-IDEAL2006 volume 4224 of the series lecture notes in computer science pp. 224-231 springer publisher.
- Niska, H., Rantamaki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J. (2005) Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment 39(35), 6524-6536. https://doi.org/10.1016/j.atmosenv.2005.07.035
- Orr, M.J.L. (1996) Introduction to radial basis function networks, University of Edinbergh, EH89LW.
- Owega, S., Khan, B.U.Z., Evans, G.J., Jervis, R.E., Fila, M. (2006) Identification of long-range aerosol transport patterns to Toronto via classification of back trajectories by cluster analysis and neural network techniques. Chemo Metrics and Intelligent Laboratory Systems 83(1), 26-33. https://doi.org/10.1016/j.chemolab.2005.12.009
-
Romanof, N. (1982), A Markov chain model for the mean daily
$SO_2$ concentrations. Atmospheric Environment 16(8), 1895-1897. https://doi.org/10.1016/0004-6981(82)90377-8 - Rumelhart, D.E., McClelland, J.L. (1986) Parallel distribution processing: Exploration in the microstructure of cognition, Cambridge, MA: MIT Press.
- Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M. (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy 30, 693-708. https://doi.org/10.1016/j.energy.2004.05.026
- Slaughter, J.C., Lumley, T., Sheppard, L., Koenig, J.Q., Shapiro, G.G. (2003) Effects of ambient air pollution on symptom severity and medication use in children with asthma. Annals of Allergy, Asthma and Immunology 91(4), 346-353. https://doi.org/10.1016/S1081-1206(10)61681-X
-
Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N. (2006)
$PM_{10}$ forecasting for Thessaloniki, Greece. Environ. Modell. Softw. 21, 559-565. https://doi.org/10.1016/j.envsoft.2004.06.011 - Song, X.M. (1996) Radial basis function networks for empirical modeling of chemical process. MSc thesis, University of Helsinki.
-
Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S. (2013) Prediction of 24-hour-average
$PM_{2.5}$ concentrations using a hidden Markov model with different emission distributions in Northern California. Science of the Total Environment 443, 93-103. https://doi.org/10.1016/j.scitotenv.2012.10.070 - Taylor, H., Karlin, S. (1998) An Introduction to Stochastic Modeling. Academic Press, San Diego, California.
-
Voukantsis, D., Karatzas, K., Kukkonen, J., Rasanen, T., Karppinen, A., Kolehmainen, M. (2011) Intercomparison of air quality data using principal component analysis, and forecasting of
$PM_{10}$ and$PM_{2.5}$ concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment 409, 1266-1276. https://doi.org/10.1016/j.scitotenv.2010.12.039 - Wang, X., Liu, W. (2012) Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain. Physics Procedia 24, 1601-1606. https://doi.org/10.1016/j.phpro.2012.02.236
- Wilks, D.S. (2006) Statistical methods in the atmospheric sciences. 2nd ed. Academic Press, xvii, 627 p.
-
Zickus, M., Greig, A.J., Niranjan, M. (2002) Comparison of four machine learning methods for predicting
$PM_{10}$ concentration in Helsinki, Finland. Water, Air and Soil Pollution 2(5), 717-729. https://doi.org/10.1023/A:1021321820639 - Zurada, J.M. (1992) Introduction to Artificial Neural Systems, PWS; Singapore, 195-196.
피인용 문헌
- Application of Artificial Neural Networks to the Technical Condition Assessment of Water Supply Systems vol.24, pp.1, 2017, https://doi.org/10.1515/eces-2017-0003
- Application of Artificial Neural Networks to Predict Total Dissolved Solids at the Karaj Dam vol.26, pp.3, 2017, https://doi.org/10.1002/tqem.21493
- Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest vol.11, pp.6, 2016, https://doi.org/10.3390/atmos11060669
- Prediction of Daily PM10 Concentration for Air Korea Stations Using Artificial Intelligence with LDAPS Weather Data, MODIS AOD, and Chinese Air Quality Data vol.36, pp.4, 2016, https://doi.org/10.7780/kjrs.2020.36.4.7
- Comparison of static MLP and dynamic NARX neural networks for forecasting of atmospheric PM10 and SO2 concentrations in an industrial site of Turkey vol.21, pp.3, 2020, https://doi.org/10.1080/15275922.2020.1771637
- Research on a Novel Hybrid Decomposition-Ensemble Learning Paradigm Based on VMD and IWOA for PM2.5 Forecasting vol.18, pp.3, 2016, https://doi.org/10.3390/ijerph18031024
- Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj city, Iran: Sources, distributions, and health risks vol.72, pp.None, 2021, https://doi.org/10.1016/j.scs.2021.103020
- Potential cytotoxicity of PM2.5-bound PAHs and toxic metals collected from areas with different traffic densities on human lung epithelial cells (A549) vol.19, pp.2, 2016, https://doi.org/10.1007/s40201-021-00724-8