DOI QR코드

DOI QR Code

Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

  • Song, Chieun (Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University) ;
  • Chung, Woo Sik (Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University) ;
  • Lim, Chae Oh (Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University)
  • 투고 : 2016.01.26
  • 심사 : 2016.03.23
  • 발행 : 2016.06.30

초록

Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide ($H_2O_2$), and an endogenous $H_2O_2$ propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.

키워드

참고문헌

  1. Busch, W., Wunderlich, M., and Schoffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41, 1-14.
  2. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2 is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262.
  3. Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y., and Lim, C.O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem. Biophys. Res. Commun. 401, 238-244. https://doi.org/10.1016/j.bbrc.2010.09.038
  4. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. https://doi.org/10.1105/tpc.104.026971
  5. ElSayed, A.I., Rafudeen, M.S., and Golldack, D. (2014). Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. 16, 1-8.
  6. Guan, Q., Wen, C., Zeng, H., and Zhu, J. (2013). A KH domaincontaining putative RNA-binding protein is critical for heat stressresponsive gene regulation and thermotolerance in Arabidopsis. Mol. Plant 6, 386-395. https://doi.org/10.1093/mp/sss119
  7. Guo, L., Chen, S., Liu, K., Liu, Y., Ni, L., Zhang, K., and Zhang, L. (2008). Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol. 49, 1306-1315. https://doi.org/10.1093/pcp/pcn105
  8. Hall, A.E. (2001). Crop responses to the environment. (CRC press, Boca Raton, FL).
  9. Hwang, J.E., Lim, C.J., Chen, H., Je, J., Song, C., and Lim, C.O. (2012). Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress. Mol. Cells 33, 135-140. https://doi.org/10.1007/s10059-012-2188-2
  10. Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heatinducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157, 1243-1254. https://doi.org/10.1104/pp.111.179036
  11. Je, J., Chen, H., Song, C., and Lim, C.O. (2014). Arabidopsis DREB2C modulates ABA biosynthesis during germination. Biochem. Biophys. Res. Commun. 452, 91-98. https://doi.org/10.1016/j.bbrc.2014.08.052
  12. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: ${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.
  13. Jung, H.S., Crisp, P.A., Estavillo, G.M., Cole, B., Hong, F., Mockler, T.C., Pogson, B.J., and Chory, J. (2013). Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. USA 110, 14474-14479. https://doi.org/10.1073/pnas.1311632110
  14. Keller, F., and Pharr, D.M. (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In E. Zamski, A.A. Schaffer, eds., Photoassimilate distribution in plants and crops: Source-Sink Relationships. (Marcel Dekker, New York), pp.157-183.
  15. Kim, H.S., Park, B.O., Yoo, J.H., Jung, M.S., Lee, S.M., Han, H.J., Kim, K.E., Kim, S.H., Lim, C.O., Yun, D.J., et al. (2007). Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J. Biol. Chem. 282, 36292-36302. https://doi.org/10.1074/jbc.M705217200
  16. Kim, M.S., Cho, S.M., Kang, E.Y., Im, Y.J., Hwangbo, H., Kim, Y.C., Ryu, C.M., Yang, K.Y., Chung, G.C., and Cho, B.H. (2008). Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Inter. 12, 1643-1653.
  17. Lahuta, L.B., Pluskota, W.E., Stelmaszewska, J., and Szablinska, J. (2014). Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). J Plant Physiol. 171, 1306-1314. https://doi.org/10.1016/j.jplph.2014.04.012
  18. Lim, C.J., Hwang, J.E., Chen, H., Hong, J.K., Yang, K.A., Choi, M.S., Lee, K.O., Chung, W.S., Lee, S.Y., and Lim, C.O. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Res. Commun. 362, 431-436. https://doi.org/10.1016/j.bbrc.2007.08.007
  19. Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J.L., and Herrera-Estrella, L. (2004). Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol. Biol. Rep. 22, 63-70. https://doi.org/10.1007/BF02773350
  20. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33, 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  21. Nishizawa, A., Yabuta, Y., Yoshida, E., Marut,a T., Yoshimura, K., and Shigeoka, S. (2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547. https://doi.org/10.1111/j.1365-313X.2006.02889.x
  22. Nishizawa, A., Yabuta, Y., and Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147, 1251-1263. https://doi.org/10.1104/pp.108.122465
  23. Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177-189. https://doi.org/10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
  24. Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H., and Schoffl, F. (2004). Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136, 3148-3158. https://doi.org/10.1104/pp.104.042606
  25. Peterbouer, T., and Richter, A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 11, 185-197.
  26. Scarpeci, T.E., Zanor, M.I., and Valle, E.M. (2008). Investigating the role of plant heat shock proteins during oxidative stress. Plant Sig. Behav. 3, 856-857. https://doi.org/10.4161/psb.3.10.6021
  27. Shin, S.Y., Kim, M.H., Kim, Y.H., Park, H. M., and Yoon, H.S. (2013). Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Mol. Cells 36, 304-315. https://doi.org/10.1007/s10059-013-0071-4
  28. Slesak, R., Karpinska, B., Surowka, E., Miszalski, Z., and Karpinski, S. (2003). Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol. 44, 573-581. https://doi.org/10.1093/pcp/pcg073
  29. Song, C., Je, J., Hong, J.K., and Lim, C.O. (2014). Ectopic expression of an Arabidopsis dehydration-responsive element-binding factor DREB2C improves salt stress tolerance in crucifers. Plant Cell Rep. 33, 1239-1254. https://doi.org/10.1007/s00299-014-1612-9
  30. Sun, Z., Qi, X., Wang, Z., Li, P., Wu, C., Zhang, H., and Zhao, Y. (2013). Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses Plant Physiol. Biochem. 69, 82-89. https://doi.org/10.1016/j.plaphy.2013.04.009
  31. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki K., and Shinozaki K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417-426. https://doi.org/10.1046/j.0960-7412.2001.01227.x
  32. Vallelian-Bindschedler, L., Mosinger, E., Metraux, J.P., and Schweizer, P. (1998). Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves. Plant Mol. Biol. 37, 297-308. https://doi.org/10.1023/A:1005982715972
  33. Valluru, R., and den Ende, W.V. (2011). Myo-inositol and beyond - Emerging networks under stress. Plant Sci. 181, 387-400. https://doi.org/10.1016/j.plantsci.2011.07.009
  34. Xuan, Y., Zhou, S., Wang, L., Cheng, Y., and Zhao, L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol. 153, 1895-1906. https://doi.org/10.1104/pp.110.160424
  35. Yu, B., Xu, C., and Benning, C. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphatelimited growth. Proc. Natl. Acad. Sci. USA 99, 5732-5737. https://doi.org/10.1073/pnas.082696499
  36. Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2008). Functional analysis of an Arabidopsis heatshock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 362, 431-436.

피인용 문헌

  1. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper vol.51, pp.18, 2017, https://doi.org/10.1021/acs.est.7b02265
  2. Genome-Wide Identification and Expression Profiling Analysis of the Galactinol Synthase Gene Family in Cassava (Manihot esculenta Crantz) vol.8, pp.11, 2018, https://doi.org/10.3390/agronomy8110250
  3. Heterologous Expression of the Transcription Factor EsNAC1 in Arabidopsis Enhances Abiotic Stress Resistance and Retards Growth by Regulating the Expression of Different Target Genes vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01495
  4. Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches pp.00319317, 2018, https://doi.org/10.1111/ppl.12812
  5. Genome-Wide Association Studies Reveal Genetic Variation and Candidate Genes of Drought Stress Related Traits in Cotton (Gossypium hirsutum L.) vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01276
  6. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors vol.247, pp.6, 2018, https://doi.org/10.1007/s00425-018-2865-2
  7. VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis vol.247, pp.6, 2018, https://doi.org/10.1007/s00425-018-2879-9
  8. Thermopriming reprograms metabolic homeostasis to confer heat tolerance vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-36484-z
  9. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions vol.40, pp.8, 2016, https://doi.org/10.14348/molcells.2017.0075
  10. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling‐Tolerant Sorghums vol.10, pp.3, 2016, https://doi.org/10.3835/plantgenome2017.03.0025
  11. Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean vol.11, pp.1, 2018, https://doi.org/10.3835/plantgenome2017.08.0074
  12. Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants vol.9, pp.11, 2019, https://doi.org/10.1007/s13205-019-1924-0
  13. StressGenePred: a twin prediction model architecture for classifying the stress types of samples and discovering stress-related genes in arabidopsis vol.20, pp.suppl11, 2016, https://doi.org/10.1186/s12864-019-6283-z
  14. Novel Role of JAC1 in Influencing Photosynthesis, Stomatal Conductance, and Photooxidative Stress Signalling Pathway in Arabidopsis thaliana vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.01124
  15. Analysis of the impact of indole-3-acetic acid (IAA) on gene expression during leaf senescence in Arabidopsis thaliana vol.26, pp.4, 2020, https://doi.org/10.1007/s12298-019-00752-7
  16. Wheat Heat Shock Factor TaHsfA6f Increases ABA Levels and Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Plants vol.21, pp.9, 2016, https://doi.org/10.3390/ijms21093121
  17. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses vol.10, pp.1, 2016, https://doi.org/10.1038/s41598-020-72191-4
  18. Genome-wide characterization of tea plant ( Camellia sinensis ) Hsf transcription factor family and role of CsHsfA2 in heat tolerance vol.20, pp.None, 2016, https://doi.org/10.1186/s12870-020-02462-9
  19. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.618835
  20. A Regulatory Network of Heat Shock Modules-Photosynthesis-Redox Systems in Response to Cold Stress Across a Latitudinal Gradient in Bermudagrass vol.12, pp.None, 2016, https://doi.org/10.3389/fpls.2021.751901
  21. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death vol.10, pp.2, 2016, https://doi.org/10.3390/cells10020200
  22. Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks vol.22, pp.4, 2016, https://doi.org/10.3390/ijms22042040
  23. Alternative Splicing of Heat Shock Transcription Factor 2 Regulates Expression of the Laccase Gene Family in Response to Copper in Trametes trogii vol.87, pp.8, 2021, https://doi.org/10.1128/aem.00055-21
  24. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants vol.172, pp.2, 2016, https://doi.org/10.1111/ppl.13268
  25. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress vol.44, pp.7, 2016, https://doi.org/10.1111/pce.14015
  26. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 vol.17, pp.9, 2016, https://doi.org/10.1080/15548627.2020.1820778
  27. A Novel Heat Shock Transcription Factor (ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111922
  28. Genome‐wide identification of heat shock transcription factors and potential role in regulation of antioxidant response under hot water and glycine betaine treatments in cold‐stored peache vol.102, pp.2, 2022, https://doi.org/10.1002/jsfa.11392