DOI QR코드

DOI QR Code

Preparation of Norbornene-functionalized MWNT and Its Nanocomposite with DCPD

Norbornene 기능화 MWNT 제조 및 DCPD와의 나노복합재료

  • No, Heun Hyo (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yang, Guang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jong Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 노흔효 (금오공과대학교 고분자공학과) ;
  • 양광 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과) ;
  • 이종근 (금오공과대학교 고분자공학과)
  • Received : 2016.05.17
  • Accepted : 2016.06.11
  • Published : 2016.06.30

Abstract

Multi-walled carbon nanotubes (MWNT) were grafted with norbornene groups (MWNT-g-Norbornene) and incorporated into dicyclopentadiene (DCPD) to produce a nanocomposite cured by ring-opening metathesis polymerization (ROMP). The functionalization of the MWNT surfaces during the modification procedure was confirmed by means of FT-IR spectroscopy. Tensile test results showed that the toughness of the DCPD/MWNT-g-Norbornene nanocomposites was considerably increased by about 220%, compared to that of neat DCPD. The enhanced toughness could be a result of increased dispersion of MWNT-g-Norbornene and increased interfacial adhesion between the functionalized MWNT and DCPD, as revealed by FE-SEM images of the fractured surfaces.

Keywords

References

  1. V. Dragutan, A. T. Balaban, and M. Dimonie, "Olefin Metathesis and Ring Opening Polymerization of Cycloolefins", Wiley-Interscience, New York, 1985.
  2. K. J. Ivin and J. C. Mol, "Olefin Metathesis and Metathesis Polymerization", Academic Press, San Diego, 1997.
  3. S. Nayab, W. Park, H. Y. Woo, I. K. Sung, W. S. Hwang, and H. Lee, "Synthesis and Characterization of Novel Tungsten Complexes and Their Activity in the ROMP of Cyclic Olefins", Polyhedron, 2012, 42, 102-109. https://doi.org/10.1016/j.poly.2012.05.008
  4. A. Lehtonen, H. Balcar, J. Sedlacek, and R. Sillanpaa, "Synthesis and ROMP Activity of Aminophenol-substituted Tungsten(VI) and Molybdenum(VI) Complexes", J. Organomet. Chem., 2008, 693, 1171-1176. https://doi.org/10.1016/j.jorganchem.2008.01.007
  5. S. Hayano, H. Kurakata, Y. Tsunogae, Y. Nakayama, Y. Sato, and H. Yasuda, "Stereospecific Ring-opening Metathesis Polymerization of Cycloolefins Using Novel Molybdenum and Tungsten Complexes Having Biphenolate Ligands. Development of Crystalline Hydrogenated Poly(endo-dicyclopentadiene) and Poly(norbornene)", Macromolecules, 2003, 36, 7422-7431. https://doi.org/10.1021/ma034611y
  6. Z. Wu, A. D. Benedicto, and R. H. Grubbs, "Living Ringopening Metathesis Polymerization of Bicyclo[3.2.0]heptene Catalyzed by A Ruthenium Alkylidene Complex", Macromolecules, 1993, 26, 4975-4977. https://doi.org/10.1021/ma00070a039
  7. P. Schwab, R. H. Grubbs, and J. W. Ziller, "Synthesis and Applications of $RuCl_2$(=CHR'$(PR_3)_2$: The Influence of the Alkylidene Moiety on Metathesis Activity", J. Am. Chem. Soc., 1996, 118, 100-110. https://doi.org/10.1021/ja952676d
  8. R. H. Grubbs and S. Chang, "Recent Advances in Olefin Metathesis and Its Application Organic Synthesis", Tetrahedron, 1998, 54, 4413-4450. https://doi.org/10.1016/S0040-4020(97)10427-6
  9. C. W. Bielawski and R. H. Grubbs, "Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands", Angew. Chem.: Int. Ed., 2000, 39, 2903-2906. https://doi.org/10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q
  10. M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, "Synthesis and Activity of A New Generation of Ruthenium-based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands", Org. Lett., 1999, 1, 953-956. https://doi.org/10.1021/ol990909q
  11. T. A. Davidson and K. B. Wagener, "The Polymerization of Dicyclopentadiene: An Investigation of Mechanism", J. Mol. Catal. A-Chem., 1998, 133, 67-74. https://doi.org/10.1016/S1381-1169(98)00091-0
  12. J. D. Rule and J. S. Moore, "ROMP Reactivity of Endo- and Exo-dicyclopentadiene", Macromolecules, 2002, 35, 7878-7882. https://doi.org/10.1021/ma0209489
  13. H. Ng and I. Manas-Zloczower, "Rheokinetic Studies for the Reaction Injection Molding of Polydicyclopentadiene", Polym. Eng. Sci., 1994, 34, 921-928. https://doi.org/10.1002/pen.760341109
  14. L. Matejka, C. Houtoman, and C. W. Macosko, "Polymerization of Dicyclopentadiene: A New Reaction Injection Molding System", J. Appl. Polym. Sci., 1985, 30, 2787-2803. https://doi.org/10.1002/app.1985.070300707
  15. C. W. Macosko, "RIM: Fundamentals of Reaction Injection Molding", VCH, New York, 1989.
  16. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic Healing of Polymer Composites", Nature, 2001, 409, 794-797. https://doi.org/10.1038/35057232
  17. M. R. Kessler, N. R. Sottos, and S. R. White, "Self-healing Structural Composite Materials", Composites: Part A, 2003, 34, 743-753. https://doi.org/10.1016/S1359-835X(03)00138-6
  18. M. R. Kessler and S. R. White, "Cure Kinetics of the Ring-Opening Metathesis Polymerization of Dicyclopentadiene", J. Polym. Sci. Polym. Chem., 2002, 40, 2373-2383. https://doi.org/10.1002/pola.10317
  19. Y. Y. Huang and E. M. Terentjev, "Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties", Polymers, 2012, 4, 275-295. https://doi.org/10.3390/polym4010275
  20. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, "Solution Properties of Singlewalled Carbon Nanotubes", Science, 1998, 282, 95-98. https://doi.org/10.1126/science.282.5386.95
  21. E. Papirer and D. Y. Wu, "Study of the Behavior and Conformation of Linear Hydrocarbon Chains Grafted on the Surface of Carbon Black", Carbon, 1990, 28, 393-399. https://doi.org/10.1016/0008-6223(90)90013-O
  22. C. A. Frysz and D. D. L. Chung, "Improving the Electrochemical Behavior of Carbon Black and Carbon Filaments by Oxidation", Carbon, 1997, 35, 1111-1127. https://doi.org/10.1016/S0008-6223(97)00083-3
  23. H. Chen, O. Jacobs, W. Wu, G. Rudiger, and B. Schadel, "Effect of Dispersion Method on Tribological Properties of Carbon Nanotube Reinforced Epoxy Resin Composites", Polym. Test., 2007, 26, 351-360. https://doi.org/10.1016/j.polymertesting.2006.11.004
  24. P. C. Ma, J. K. Kim, and B. Z. Tang, "Functionalization of Carbon Nanotubes Using A Silane Coupling Agent", Carbon, 2006, 44, 3232-3238. https://doi.org/10.1016/j.carbon.2006.06.032
  25. P. C. Ma, J. K. Kim, and B. Z. Tang, "Effects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites", Compos. Sci. Technol, 2007, 67, 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006
  26. R. Yudianti, H. Onggo, Sudirman, Y. Saito, T. Iwata, and J. I. Azuma, "Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface", Open Mater. Sci. J., 2011, 5, 242-247. https://doi.org/10.2174/1874088X01105010242
  27. K. Kordas, T. Mustonen, G. Toth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vjtai, and P. Ajayan, "Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes", Small, 2006, 2, 1021-1025. https://doi.org/10.1002/smll.200600061
  28. A. S. Jones, J. D. Rule, J. S. Moore, S. R. White, and N. R. Sottos, "Catalyst Morphology and Dissolution Kinetics of Selfhealing Polymers", Chem. Mater., 2006, 18, 1312-1317. https://doi.org/10.1021/cm051864s

Cited by

  1. Effects of Chemical Functionalization of MWCNTs on the Structural and Physical Properties of Elastomeric Copolyetherester-based Composite Fibers vol.19, pp.3, 2018, https://doi.org/10.1007/s12221-018-7699-9