DOI QR코드

DOI QR Code

2015년 2월 22일 인천광역시 덕적도에서 포집된 황사의 광물학적 특성

Mineralogical Properties of Asian Dust Sampled at Deokjeok Island, Incheon, Korea in February 22, 2015

  • 박미연 (안동대학교 지구환경과학과) ;
  • 정기영 (안동대학교 지구환경과학과)
  • Park, Mi Yeon (Department of Earth and Environmental Sciences, Andong National University) ;
  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2016.05.07
  • 심사 : 2016.06.23
  • 발행 : 2016.06.30

초록

황사는 태양광, 대기 가스, 에어로졸, 해양생태계와 상호작용하여 지구 기후에 영향을 미치며, 광물특성은 이와 같은 황사와 환경의 상호작용 이해에 필수적이다. 이 연구에서는 2015년 2월 22일 인천광역시 덕적도에서 포집된 황사시료의 광물특성을 분석하였다. X선회절분석(XRD) 결과, 층상규산염광물이 총 62 wt%이었는데, 일라이트류 점토광물(일라이트 및 일라이트-스멕타이트 혼합층)이 55%로 함량이 가장 높았으며, 그 외 녹니석이 5%, 캐올리나이트가 2% 정도 함유되어 있었다. 비층상규산염 광물로서 석영 18%, 사장석 10%, K-장석 4%, 방해석 5%, 석고 1% 등이 함유되어 있었다. 주사전자현미경(SEM)과 에너지분산분광분석(EDS)에 의한 황사 개별 입자의 광물학적 분석에서도 유사한 조성이 얻어졌다. 황사의 주성분인 극미립 층상규산염광물입자에 대하여 투과전자현미경(TEM) 및 EDS 분석을 실시한 결과, 다양한 성분비율과 혼합양상을 보이는 일라이트류 점토광물이 주요 광물로 확인되었다. SEM 형태 관찰에 의하면 황사입자들은 점토광물이 주성분인 덩어리, 혹은 점토광물로 피복된 석영, 장석, 운모 입자들로 구성되어 있었다. 석고가 점토와 함께 황사입자표면에서 자주 관찰된 반면, 이전에 황사입자에 흔히 수반되는 것으로 보고된 섬유상 방해석은 드물어서, 황사 이동 중에 방해석이 산성대기오염물과의 반응에 의하여 석고로 변한 것으로 추정된다. 2015년 분석 결과는 황사와 환경의 상호작용 모델링을 위한 광물의 대표 특성 수립에 기여할 것이다.

Asian dust (Hwangsa) interacts with light, atmospheric gas, aerosol, and marine ecosystem, affecting Earth climate. Mineralogical properties are essential to understand the interaction between the dust and environments. In this study, we examined the mineralogical properties of Asian dust collected at Deokjeok Island, Incheon, Korea in February 22, 2015. X-ray diffraction (XRD) analyses showed that phyllosilicate minerals (62 wt%) dominate the Asian dust. Illite-smectite series clay minerals (55%) were common with minor chlorite (5%) and kaolinite (2%). Non-phyllosilicate minerals were quartz (18%), plagioclase (10%), K-feldspar (4%), calcite (4%), and gypsum (1%). Similar results were obtained by mineral quantification using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Transmission electron microscopy combined with EDS confirmed illite-smectite series clay minerals as the dominant phyllosilicate type. Morphological analyses using SEM showed clay agglomerates, clay-coated quartz, feldspars, and micas. Gypsum grains were common on the particle surface, while calcite nanofibers, previously reported as common on the surface, were rare, indicating the reaction of calcite and acidic atmospheric pollutants to form gypsum. The analytical result of 2015 Asian dust would contribute to the establishment of mineralogical base for the modeling of the interaction between Asian dust and environments.

키워드

참고문헌

  1. Avila, A., Queralt-Mitjans, I., and Alacon, M. (1997) Mineralogical composition of African dust delivered by red rains over northeastern Spain. J. Geophys. Res., 102, D18, 21977-21996. https://doi.org/10.1029/97JD00485
  2. Brindley, G.W. (1980) Order-disorder in clay mineral structures. In: Brindley, G.W., Brown, G. (eds.), Crystal Structures of Clay Minerals and Their X-ray Identification, Monograph 5, Mineralogical Society, London, 125-195.
  3. Chun, Y., Boo, K.-O., Kim, J., Park, S.-U., and Lee, M. (2001) Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res., 106, D16, 18461-18469. https://doi.org/10.1029/2001JD900184
  4. Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., and Crutzen, P.J. (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res., 101, 22869-22889. https://doi.org/10.1029/96JD01818
  5. Formenti, P., Schutz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D. (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys., 11, 8231-8256, doi:10.5194/acp-11-8231-2011.
  6. Freedman, M.A. (2015) Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 3850-3858. https://doi.org/10.1021/acs.jpclett.5b01326
  7. Glaccum, R.A. and Prospero, J.M. (1980) Saharan aerosols over the tropical north Atlantic-Mineralogy. Mar. Geol., 37, 295-321. https://doi.org/10.1016/0025-3227(80)90107-3
  8. Jeong, G.Y. (2007) Nanosized calcite in the Chinese loess. J. Miner. Soc. Korea, 20, 255-260.
  9. Jeong, G.Y. (2008) Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res.-Atmos., 113, D02208, doi: 10.1029/2007JD008606.
  10. Jeong, G.Y. and Achterberg, E.P. (2014) Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys., 14, 12415-12428. https://doi.org/10.5194/acp-14-12415-2014
  11. Jeong, G.Y. and Chun, Y. (2006) Nanofiber calcite in Asian dust and its atmospheric roles. Geophys. Res. Lett., 33, L24802. https://doi.org/10.1029/2006GL028280
  12. Jeong, G.Y. and Nousiainen, T. (2014) TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmos. Chem. Phys., 14, 7233-7254. https://doi.org/10.5194/acp-14-7233-2014
  13. Jeong, G.Y., Choi, H.-J., and Kwon, S.-K. (2011) Single-Particle Mineralogy and Mixing State of Asian Dust, Spring, 2009. J. Miner. Soc. Korea, 24, 225-234. https://doi.org/10.9727/jmsk.2011.24.3.225
  14. Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C., and Chun, Y. (2014) Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys., 14, 505-521.
  15. Johnson, M.S. and Meskhidze, N. (2013) Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy, Geosci. Model Dev., 6, 1137-1155. https://doi.org/10.5194/gmd-6-1137-2013
  16. Kemppinen, O., Nousiainen, T., and Jeong, G.Y. (2015) Effects of dust particle internal structure on light scattering. Atmos. Chem. Phys., 15, 12011-12027. https://doi.org/10.5194/acp-15-12011-2015
  17. Klaver, A., Formenti, P., Caquineau, S., Chevaillier, S., Ausset, P., Calzolai, G., Osborne, S., Johnson, B., Harrison, M., and Dubovik, O. (2011) Physicochemical and optical properties of Sahelian and Saharan mineral dust: in situ measurements during the GERBILS campaign. Quart. J. Royal Meteor. Soc., 137, 1193-1210. https://doi.org/10.1002/qj.889
  18. Kulkarni, G. and Dobbie, S. (2010) Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atoms. Chem. Phys., 10, 95-105. https://doi.org/10.5194/acp-10-95-2010
  19. Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., and Siefert, R.L. (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci., 1, 245-278. https://doi.org/10.1146/annurev.marine.010908.163727
  20. Matsumoto, J., Takahashi, K., Matsumi, Y., Yabushita, A., Shimizhu, A., Matsui, I., and Sugimoto, N. (2006) Scavenging of pollutant acid substances by Asian mineral dust particles. Geophys. Res. Lett., 33, L07816.
  21. Meunier, A. and Velde, B. (2004) Illite, Springer, Berlin.
  22. Moore, D.M. and Reynolds Jr., R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332pp.
  23. Okada, K., Naruse, H., Tanaka, T., Nemoto, O., Iwasaka, Y., Wu, P.-M., Ono, A., Duce, R.A., Uematsu, M., Merrill, J.T., and Arao, K. (1990) X-ray spectrometry of individual Asian dust-strom particles over the Japanese islands and the north Pacific Ocean. Atmos. Environ., 24A, 1369-1378.
  24. Reid, J.S., Jonsson, H.H., Maring, H.B., Smirnov, A., Savoie, D.L., Cliff, S.S., Reid, E.A., Livingston, J.M., Meier, M.M., Dubovik, O., and Tsay, S.C. (2003) Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, doi:10.1029/2002JD002485.
  25. Ro, C.-U., Hwang, H., Kim, H., Chun, Y., and Van Grieken, R. (2005) Single-particle characterization of four Asian dust samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environ. Sci. Technol., 39, 1409-1419. https://doi.org/10.1021/es049772b
  26. Seinfeld, J.H. and 24 authors (2004) ACE-ASIA regional climatic and atmospheric chemical effects of Asian dust and pollution, Bull. Am. Meteorol. Soc., 85, 367-380. https://doi.org/10.1175/BAMS-85-3-367
  27. Shi, Z., Shao, L., Jones, T.P., and Lu, S. (20050 Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res., 110, D01303, doi:10.1029/2004JD005073.
  28. Sokolik, I.N. and Toon, O.B. (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104, D8, 9423-9444. https://doi.org/10.1029/1998JD200048
  29. Sun, J.M., Zhang, M.Y., and Liu, T.S. (2001), Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: relations to source area and climate. J. Geophys. Res., 106, 10325-10334. https://doi.org/10.1029/2000JD900665
  30. Swap, R., Garstang, M., Greco, S., Talbot, R., and Kollberg, P. (1992) Saharan dust in the Amazon Basin. Tellus, 44B, 133-149.
  31. Uematsu, M., Duce, R.A., Prospero, J.M., Chen, J.Q., Merill, J.T., and McDonald, R.L. (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J. Geophys. Res. 88, 5343-5352. https://doi.org/10.1029/JC088iC09p05343
  32. Weaver, C.E. and Pollard, L.D. (1975) The chemistry of clay minerals, Elsevier, Amsterdam.
  33. Yoon, S.-C., Kim, S.-W., Kim, J., Sohn, B.-J., Jefferson, A., Choi, S.-J., Cha, D.-H., Lee, D.-K., Anderson, T.L., Doherty, S.J., and Weber, R.J. (2006) Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties. Atmos. Environ., 40, 2409-2421. https://doi.org/10.1016/j.atmosenv.2005.12.018

피인용 문헌

  1. Mineralogical Properties of Asian Dust in April 6 and 15, 2018, Korea vol.31, pp.2, 2018, https://doi.org/10.9727/jmsk.2018.31.2.103
  2. Amorphous Silica in Soil Silt vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.287
  3. Mineralogy, geochemistry, and eolian source of mountain soils on quartzite vol.55, pp.1, 2019, https://doi.org/10.14770/jgsk.2019.55.1.87
  4. Mineralogical properties and internal structures of individual fine particles of Saharan dust vol.16, pp.19, 2016, https://doi.org/10.5194/acp-16-12397-2016
  5. 전남 나주시 장동리 지역에 노출된 적갈색 점토-실트 퇴적물의 광물 및 지화학적 특성 vol.30, pp.1, 2017, https://doi.org/10.9727/jmsk.2016.30.1.11
  6. Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air vol.20, pp.12, 2016, https://doi.org/10.5194/acp-20-7411-2020