DOI QR코드

DOI QR Code

미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation

  • 김형준 (연세대학교 과학기술대학 화학및의화학과) ;
  • 오제민 (연세대학교 과학기술대학 화학및의화학과)
  • Kim, Hyoung-Jun (Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University) ;
  • Oh, Jae-Min (Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University)
  • 투고 : 2016.06.10
  • 심사 : 2016.06.25
  • 발행 : 2016.06.30

초록

점토광물은 자연에서 쉽게 얻을 수 있고, 환경친화적이며 다양한 물리화학적 특성을 갖고 있어 인류 역사상 여러 분야에 활용되어 왔다. 최근에는 몬모릴로나이트, 카올리나이트, 세피올라이트, 금속이중층수산화물과 같은 점토 화합물에 화학적 개질을 도입하여 산업분야에 활용하고자 하는 연구가 활발히 진행되고 있다. 넓은 비표면적과 높은 측면비율, 나노수준의 입자 두께, 그리고 조절가능한 표면전하를 갖는 점토화합물에 화학적 개질을 적용하면, 고분자의 기계적 성질과 기체차단성을 개선하고, 고분자 필름에 지속적 항균성을 부여하는 충전제로 사용할 수 있다. 또한, 개질된 점토화합물은 높은 흡착능과 화학적 선택성을 지니므로, 수질이나 토양을 오염시키는 화학적, 생물학적 오염원을 효과적으로 제거하는 물질로도 활용 가능하다. 본 논평에서는 이러한 점토화합물들이 미래의 주요산업군인 식품포장재 및 환경개선 분야에 활용될 가능성에 대해 최근 연구 결과를 소개하고자 한다.

Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

키워드

참고문헌

  1. Alcantara, A., Darder, M., Aranda, P., Ayral, A., and Ruiz-Hitzky, E. (2016) Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of applied polymer science, 133, 42362.
  2. Ammala, A., Hill, A. J., Lawrence, K. A., and Tran, T., (2007) Poly (m-xylene adipamide)-kaolinite and poly (m-xylene adipamide)-montmorillonite nanocomposites. Journal of applied polymer science, 104, 1377-1381. https://doi.org/10.1002/app.22566
  3. Anderson, D. M. (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean & coastal management, 52, 342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
  4. Ashekuzzaman, S. and Jiang, J.-Q. (2014) Study on the sorption-desorption-regeneration performance of Ca-, Mg-and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal, 246, 97-105. https://doi.org/10.1016/j.cej.2014.02.061
  5. Busolo, M. A. and Lagaron, J. M. (2012) Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging Technologies, 16, 211-217. https://doi.org/10.1016/j.ifset.2012.06.008
  6. Campos-Requena, V. H., Rivas, B. L., Perez, M. A., Figueroa, C. R., and Sanfuentes, E. A. (2015) The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT-Food Science and Technology, 64, 390-396. https://doi.org/10.1016/j.lwt.2015.06.006
  7. Carmody, O., Frost, R., Xi, Y., and Kokot, S. (2007) Adsorption of hydrocarbons on organo-clays-implications for oil spill remediation. Journal of Colloid and Interface Science, 305, 17-24. https://doi.org/10.1016/j.jcis.2006.09.032
  8. Carretero, M. I. (2002) Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155-163. https://doi.org/10.1016/S0169-1317(01)00085-0
  9. Celis, R., Hermosin, M. C., and Cornejo, J. (2000) Heavy metal adsorption by functionalized clays. Environmental science & technology, 34, 4593-4599. https://doi.org/10.1021/es000013c
  10. Chen, B. and Evans, J. R. G. (2005) Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydrate Polymers, 61, 455-463. https://doi.org/10.1016/j.carbpol.2005.06.020
  11. Choy, J.-H., Choi, S.-J., Oh, J.-M., and Park, T. (2007) Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122-132. https://doi.org/10.1016/j.clay.2006.07.007
  12. Costa, C., Conte, A., Buonocore, G., Lavorgna, M., and Del Nobile, M. (2012) Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Research International, 48, 164-169. https://doi.org/10.1016/j.foodres.2012.03.001
  13. Froehner, S., Martins, R. F., Furukawa, W., and Errera, M. R. (2009) Water remediation by adsorption of phenol onto hydrophobic modified clay. Water, air, and soil pollution, 199, 107-113. https://doi.org/10.1007/s11270-008-9863-0
  14. Giannakas, A., Vlacha, M., Salmas, C., Leontiou, A., Katapodis, P., Stamatis, H., Barkoula, N.-M., and Ladavos, A. (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydrate Polymers, 140, 408-415. https://doi.org/10.1016/j.carbpol.2015.12.072
  15. Guggenheim, S. and Martin, R. T. (1995) Definition of clay and clay mineral; joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals, 43, 255-256. https://doi.org/10.1346/CCMN.1995.0430213
  16. He, H.; Ma, Y., Zhu, J., Yuan, P., and Qing, Y. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67-72. https://doi.org/10.1016/j.clay.2009.11.024
  17. Hewamanna, R., Sumithrarachchi, C., Mahawatte, P., Nanayakkara, H., and Ratnayake, H. (2001) Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. Applied Radiation and Isotopes, 54, 365-369. https://doi.org/10.1016/S0969-8043(00)00107-X
  18. Ismadji, S. Soetaredjo, F. E. and Ayucitra, A., (2015) Clay materials for environmental remediation. Springer. Vol. 25.
  19. Jiang, J.-Q. and Ashekuzaman, S. (2015) Preparation and evaluation of layered double hydroxides (LDHs) for phosphate removal. Desalination and Water Treatment, 55, 836-843. https://doi.org/10.1080/19443994.2014.934734
  20. Khitous, M., Salem, Z., and Halliche, D. (2016) Removal of phosphate from industrial wastewater using uncalcined MgAl-NO3 layered double hydroxide: batch study and modeling. Desalination and Water Treatment, 57, 15920-15931. https://doi.org/10.1080/19443994.2015.1077745
  21. Krishna, B., Murty, D., and Prakash, B. J. (2001) Surfactant-modified clay as adsorbent for chromate. Applied Clay Science, 20, 65-71. https://doi.org/10.1016/S0169-1317(01)00039-4
  22. Li, L., Pan, G. (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environmental science & technology, 47, 4555-4562. https://doi.org/10.1021/es305234d
  23. Lopez, O. V., Castillo, L. A., Garcia, M. A., Villar, M. A., and Barbosa, S. E. (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids, 43, 18-24. https://doi.org/10.1016/j.foodhyd.2014.04.021
  24. Nyambo, C., Songtipya, P., Manias, E., Jimenez-Gasco, M. M., and Wilkie, C. A. (2008) Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. Journal of Materials Chemistry, 18, 4827-4838. https://doi.org/10.1039/b806531d
  25. Oh, J.-M., Biswick, T. T., and Choy, J.-H. (2009) Layered nanomaterials for green materials. Journal of Materials Chemistry, 19, 2553-2563. https://doi.org/10.1039/b819094a
  26. Okada, A., Fukushima, Y., Kawasumi, M., Inagaki, S., Usuki, A., Sugiyama, S., Kurauchi, T., and Kamigaito, O., Composite material and process for manufacturing same. Google Patents: 1988.
  27. Park, D.-H., Hwang, S.-J., Oh, J.-M., Yang, J.-H., and Choy, J.-H. (2013) Progress in Bionanocomposites: from green plastics to biomedical applications Polymer-inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 38, 1442-1486. https://doi.org/10.1016/j.progpolymsci.2013.05.007
  28. Park, D.-H., Yang, J.-H., Vinu, A., Elzatahry, A., and Choy, J.-H. (2016) X-ray diffraction and X-ray absorption spectroscopic analyses for intercalative nanohybrids with low crystallinity. Arabian Journal of Chemistry, 9, 190-205. https://doi.org/10.1016/j.arabjc.2015.07.007
  29. Park, M., Lee, C.-I., Lee, E.-J., Choy, J.-H., Kim, J.-E., and Choi, J. (2004) Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils. Journal of Physics and Chemistry of Solids, 65, 513-516. https://doi.org/10.1016/j.jpcs.2003.09.022
  30. Pei, Y. R., Eom, S. R., Park, D.-H., Oh, J.-M., and Choy, J.-H. (2014) Removal of Cyanobacteria Anabaena flos-aquae Through Montmorillonite Clays. Energy and Environment Focus, 3, 60-63. https://doi.org/10.1166/eef.2014.1082
  31. Polubesova, T., Zadaka, D., Groisman, L., and Nir, S. (2006) Water remediation by micelle-clay system: case study for tetracycline and sulfonamide antibiotics. Water research, 40, 2369-2374. https://doi.org/10.1016/j.watres.2006.04.008
  32. Sanchez-Garcia, M. D., Hilliou, L., and Lagaron, J. M. (2010) Nanobiocomposites of carrageenan, zein, and mica of interest in food packaging and coating applications. Journal of Agricultural and Food Chemistry, 58, 6884-6894. https://doi.org/10.1021/jf1007659
  33. Shepard, A. O., Ceramics for the Archaeologist. Carnegie Institution of Washington Washington, DC: 1956.
  34. Silva, J. P., Costa, A. L. H., Chiaro, S. S. X., Delgado, B. E. P. C., de Figueiredo, M. A. G., and Senna, L. F. (2013) Carboxylic acid removal from model petroleum fractions by a commercial clay adsorbent. Fuel Processing Technology, 112, 57-63. https://doi.org/10.1016/j.fuproc.2012.07.033
  35. Singh, S., Ma, L., and Hendry, M. (2006) Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies. Journal of Hazardous Materials, 136, 654-662. https://doi.org/10.1016/j.jhazmat.2005.12.047
  36. Sun, X.-X., Han, K.-N., Choi, J.-K., and Kim, E.-K. (2004) Screening of surfactants for harmful algal blooms mitigation. Marine pollution bulletin, 48, 937-945. https://doi.org/10.1016/j.marpolbul.2003.11.021
  37. Tang, X. and Alavi, S. (2012) Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. Journal of Agricultural and Food Chemistry, 60, 1954-1962. https://doi.org/10.1021/jf2024962
  38. Tornuk, F., Hancer, M., Sagdic, O., and Yetim, H. (2015) LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT-Food Science and Technology, 64, 540-546. https://doi.org/10.1016/j.lwt.2015.06.030
  39. Trainer, V. L. and Baden, D. G. (1999) High affinity binding of red tide neurotoxins to marine mammal brain. Aquatic Toxicology, 46, 139-148. https://doi.org/10.1016/S0166-445X(98)00125-8
  40. Tyan, H.-L., Liu, Y.-C., and Wei, K.-H. (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chemistry of Materials, 11, 1942-1947. https://doi.org/10.1021/cm990187x
  41. Vaccari, A. (1998) Preparation and catalytic properties of cationic and anionic clays. Catalysis today, 41, 53-71 https://doi.org/10.1016/S0920-5861(98)00038-8
  42. Veniale, F., Barberis, E., Carcangiu, G., Morandi, N., Setti, M., Tamanini, M., and Tessier, D. (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Applied Clay Science, 25, 135-148. https://doi.org/10.1016/j.clay.2003.10.002
  43. Villanueva, M. P., Cabedo, L., Lagaron, J. M., and Gimenez, E. (2010) Comparative study of nanocomposites of polyolefin compatibilizers containing kaolinite and montmorillonite organoclays. Journal of applied polymer science, 115, 1325-1335. https://doi.org/10.1002/app.30278
  44. Wang, Q. and O'Hare, D. (2012) Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews, 112, 4124-4155. https://doi.org/10.1021/cr200434v
  45. Yadav, G. and Kirthivasan, N. (1995) Single-pot synthesis of methyl tert-butyl ether from tert-butyl alcohol and methanol: dodecatungstophosphoric acid supported on clay as an efficient catalyst, Journal of the Chemical Society, Chemical Communications, 203-204.
  46. Yoneyama, T., Yamaguchi, M., Tobe, S., Nanba, T., Ishiwatari, M., Toyoda, H., Nakamura, S., Kumano, Y., Takata, S., and Ito, H., Water-in-oil emulsion type cosmetics. Google Patents: 1991.
  47. Yang, J.-H., Lee, J.-H., Ryu, H.-J., Elzatahry, A. A., Alothman, Z. A., and Choy, J.-H., Drug-clay nanohybrids as sustained delivery systems. Applied Clay Science, doi:10.1016/j.clay.2016.01.021.
  48. Yu, Z., Sengco, M. R., and Anderson, D. M. (2004) Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. Journal of applied phycology, 16, 101-110. https://doi.org/10.1023/B:JAPH.0000044775.33548.38