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Abstract. In this paper, we introduce product interval-valued fuzzy graphs
and prove several results which are analogous to interval-valued fuzzy
graphs. We conclude by giving properties for a product interval-valued

fuzzy graph.
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1. Introduction

In 1965, Zadeh [22] introduced the notion of a fuzzy subset of a set as a
method for representing uncertainty. The theory of fuzzy sets has become a vig-
orous area of research in different disciplines including medical and life sciences,
engineering, statics, graph theory, computer networks, decision making and au-
tomata theory. In 1975, Rosenfeld [8] introduced the concept of fuzzy graphs,
and proposed another elaborated definition, including fuzzy vertex and fuzzy
edges, and several fuzzy analogs of graph theoretic concepts such as paths, cy-
cles, connectedness and etc. Zadeh [22] introduced the notion of interval-valued
fuzzy sets as an extension of fuzzy set [23] in which the values of the membership
degrees are intervals of numbers instead of the number. Interval-valued fuzzy set
provid a more adequate description of uncertainty than traditional fuzzy sets. It
is therefore important to use interval-valued fuzzy sets in applications, such as
fuzzy control. The first definition of interval-valued fuzzy graph was proposed
by Akram and Dudek [1]. Rashmanlou et al. [9, 10, 11, 12, 13, 14] studied bipo-
lar fuzzy graphs, balanced interval-valued fuzzy graph, complete interval-valued
fuzzy graphs and some properties of highly irregular interval-valued fuzzy graphs.
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Samanta and Pal [17, 18, 19, 20, 21] defined fuzzy tolerance graphs, fuzzy thresh-
old graphs, fuzzy planar graphs, fuzzy k-competition graphs and p-competition
fuzzy graphs and irregular bipolar fuzzy graphs. In this paper we develop the
concept of product interval-valued fuzzy graphs of interval-valued fuzzy graphs,
further investigate properties of product interval-valued fuzzy graphs. The defi-
nitions that we used in this paper are standard. For other notations, the readers
are referred to [2, 3, 4, 5, 6, 7, 15, 16].

2. Preliminaries

Definition 2.1. The interval-valued fuzzy set A in V is defined by
A = {(x, [µA−(x), µA+(x)]) : x ∈ V }, where µA−(x) and µA+(x) are fuzzy
subsets of V such that µA−(x) ≤ µA+(x) ∀x ∈ V .

For any two interval-valued sets A = {(x, [µ−
A(x), µ

+
A(x)] | x ∈ V } and B =

{(x, [µ−
B(x), µ

+
B(x)] | x ∈ V } in V we define:

A ∪B = {(x, [max(µ−
A(x), µ

−
B(x)),max(µ+

A(x), µ
+
B(x))] | x ∈ V }.

Definition 2.2. By an interval-valued fuzzy graph of a graph G∗ = (V,E) we
mean a pair G = (A,B), where A = [µA− , µA+ ] is an interval-valued fuzzy
set on V and B = [µB− , µB+ ] is an interval-valued fuzzy set on E, such that
µ−
B(xy) ≤ min(µ−

A(x), µ
−
A(y)), µ+

B(xy) ≤ min(µ+
A(x), µ

+
A(y)).

Definition 2.3. Let G = (A,B) be an interval-valued fuzzy graph of a graph
G∗ = (V,E). If µB−(xy) ≤ µA−(x)× µA−(y) and µB+(xy) ≤ µA+(x)× µA+(y),
for all x, y ∈ V , then the interval-valued fuzzy graph G is called product interval-
valued fuzzy graph of G∗.

Remark 2.1. If G = (A,B) is a product interval-valued fuzzy graph, then
since µA−(x) and µA−(y) are less than or equal to 1, it follows that µB−(xy) ≤
µA−(x) × µA−(y) ≤ µA−(x) ∧ µA−(y) and µB+(xy) ≤ µA+(x) × µA+(y) ≤
µA+(x) ∧ µA+(y), for all x, y ∈ V .

Thus every product interval-valued fuzzy graph is an interval-valued fuzzy
graph.

Definition 2.4. A product interval-valued fuzzy graph G = (A,B) is said to
be complete if µB−(xy) = µA−(x) × µA−(y) and µB+(xy) = µA+(x) × µA+(y),
for all x, y ∈ V .

Proposition 2.5. Let G = (A,B) be a complete product interval-valued fuzzy
graph where µA− and µA+ are normal. Then µn

B−(xy) = µB−(xy) and µn
B+(xy) =

µB+(xy), for all x, y ∈ V in which for all positive integer n ≥ 2, µn
B−(xy) =∨

z∈V {µ
n−1
B− (xz)× µB−(zy)} and µn

B+(xy) =
∨

z∈V {µ
n−1
B+ (xz)× µB+(zy)}.

Proof. We prove by method of induction on n. Let n ≤ 2, x, y ∈ V . We have

µ2
B−(xy) =

∨
z∈V

{µB−(xz)× µB−(zy)}
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=
∨
z∈V

{(µA−(x)× µA−(z))× (µA−(z)× µA−(y))}

=
∨
z∈V

{µA−(x)× µA−(y)× µA−(z)2}

Since µA−(z)2 ≤ 1, for all z, (µA−(z) ≤ 1), µ2
B−(xy) ≤

∨
z∈V {µA−(x) ×

µA−(y)} = µA−(x)× µA−(y). Hence

µ2
B−(xy) ≤ µB−(xy) (1)

Since µA− is normal, µA−(t) = 1, for some t ∈ V . Then

µ2
B−(xy) =

∨
z∈V

{µA−(x)× µA−(y)× µA−(z)2}

≥ µA−(x)× µA−(y)× µA−(t)2

= µA−(x)× µA−(y) (µA−(t)2 = 1).

Therefore
µ2
B−(xy) ≥ µB−(xy). (2)

Now from (1) and (2), we get µ2
B−(xy) = µB−(xy). Also

µ2
B+(xy) =

∨
z∈V

{µB+(xz)× µB+(zy)}

=
∨
z∈V

{[µA+(x)× µA+(z)]× [µA+(z)× µA+(y)]}

=
∨
z∈V

{µA+(x)× µA+(y)× µA+(z)2}.

Since µA+(z)2 ≤ 1, for all z, [µA+(z) ≤ 1], µ2
B+(xy) ≤

∨
z∈V {µA+(x) ×

µA+(y)} = µA+(x)× µA+(y). Hence,

µ2
B+(xy) ≤ µB+(xy). (3)

Since µA+ is normal, µA+(t) = 1, for some t ∈ V . Then

µ2
B+(xy) =

∨
z∈V

{µA+(x)× µA+(y)× µA+(z)2}

≥ µA+(x)× µA+(y)× µA+(t)2

= µA+(x)× µA+(y).

Hence,

µ2
B+(xy) ≥ µB+(xy) [Since µ2

B+(xy) = µA+(x)× µA+(y)]. (4)

From (3) and (4) we get µ2
B+(xy) = µB+(xy). Let µk

B−(xy) = µB−(xy) and

µk
B+(xy) = µB+(xy). We will prove that µk+1

B− (xy) = µB−(xy) and µk+1
B+ (xy) =

µB+(xy). We have

µk+1
B− (xy) =

∨
z∈V

{µk
B−(xz)× µB−(zy)}
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=
∨
z∈V

{µB−(xz)× µB−(zy)} = µ2
B−(xy) = µB−(xy).

Similarly, we get µk+1
B+ (xy) = µB+(xy). �

Definition 2.6. The complement of a product interval-valued fuzzy graph
G = (A,B) is an interval-valued fuzzy graph Gc = (Ac, Bc) where Ac = A =
[µA− , µA+ ] and Bc = [µc

B− , µc
B+ ] is defined by{

µc
B−(xy) = µA−(x)× µA−(y)− µB−(xy),

µc
B+(xy) = µA+(x)× µA+(y)− µB+(xy).

x, y ∈ V

Remark 2.2. The complement of a product interval-valued fuzzy graph is
denoted by Gc. It follows that G is a product interval-valued fuzzy graph.
Throughout this paper suppose that G1 = (A1, B1) and G2 = (A2, B2) are
product interval-valued fuzzy graph of G∗

1 = (A1, B1) and G∗
2 = (A2, B2), re-

spectively.

Definition 2.7. Let G1 = (A1, B1) and G2 = (A2, B2) be interval-valued fuzzy
graph. The union G1 ∪G2 = (A1 ∪A2, B1 ∪B2) is defined as follows:

(A)


(µ−

A1
∪ µ−

A2
)(x) = µ−

A1
(x), if x ∈ V1 and x /∈ V2,

(µ−
A1

∪ µ−
A2

)(x) = µ−
A2

(x), if x ∈ V2 and x /∈ V1,

(µ−
A1

∪ µ−
A2

)(x) = max(µ−
A1

(x), µ−
A2

(x)), if x ∈ V1 ∩ V2.

(B)


(µ+

A1
∪ µ+

A2
)(x) = µ+

A1
(x), if x ∈ V1 and x /∈ V2,

(µ+
A1

∪ µ+
A2

)(x) = µ+
A2

(x), if x ∈ V2 and x /∈ V1,

(µ+
A1

∪ µ+
A2

)(x) = max(µ+
A1

(x), µ+
A2

(x)), if x ∈ V1 ∩ V2.

(C)


(µ−

B1
∪ µ−

B2
)(xy) = µ−

B1
(xy), if xy ∈ E1 and xy /∈ E2,

(µ−
B1

∪ µ−
B2

)(xy) = µ−
B2

(xy), if xy ∈ E2 and xy /∈ E1,

(µ−
B1

∪ µ−
B2

)(xy) = max(µ−
B1

(xy), µ−
B2

(xy)), if xy ∈ E1 ∩ E2.

(D)


(µ+

B1
∪ µ+

B2
)(xy) = µ+

B1
(xy), if xy ∈ E1 and xy /∈ E2,

(µ+
B1

∪ µ+
B2

)(xy) = µ+
B2

(xy), if xy ∈ E2 and xy /∈ E1,

(µ+
B1

∪ µ+
B2

)(xy) = max(µ+
B1

(xy), µ+
B2

(xy)), if xy ∈ E1 ∩ E2.

Proposition 2.8. The union of two product interval-valued fuzzy graphs is a
product interval-valued fuzzy graph.

Proof. Let G1 = (A1, B1) and G2 = (A2, B2) be product interval-valued fuzzy
graph. We prove that G1 ∪ G2 is a product interval-valued fuzzy graph of the
graph G∗

1 ∪G∗
2 = (V1 ∪ V2, E1 ∪ E2). Let xy ∈ E1 ∩ E2. Then

(µ−
B1

∪ µ−
B2

) = max(µ−
B1

(xy), µ−
B2

(xy))

≤ max(µ−
A1

(x)× µ−
A1

(y), µ−
A2

(x)× µ−
A2

(y))
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≤ max{µ−
A1

(x), µ−
A2

(x)} ×max{µ−
A1

(y), µ−
A2

(y)}
= (µ−

A1
∪ µ−

A2
)(x)× (µ−

A1
∪ µ−

A2
)(y),

(µ+
B1

∪ µ+
B2

) = max(µ+
B1

(xy), µ+
B2

(xy))

≤ max(µ+
A1

(x)× µ+
A1

(y), µ+
A2

(x)× µ+
A2

(y))

≤ max{µ+
A1

(x), µ+
A2

(x)} ×max{µ+
A1

(y), µ+
A2

(y)}
= (µ+

A1
∪ µ+

A2
)(x)× (µ+

A1
∪ µ+

A2
)(y),

If xy ∈ E1 and xy /∈ E2 then

(µ−
B1

∪ µ−
B2

)(xy) = µ−
B1

(xy) ≤ µ−
A1

(x)× µ−
A1

(y)

= (µ−
A1

∪ µ−
A2

)(x)× (µ−
A1

∪ µ−
A2

)(y),

(µ+
B1

∪ µ+
B2

)(xy) = µ+
B1

(xy) ≤ µ+
A1

(x)× µ+
A1

(y)

= (µ+
A1

∪ µ+
A2

)(x)× (µ+
A1

∪ µ+
A2

)(y).

Similarly if xy ∈ E2 and xy ∈ E1, then we get (µ−
B1

∪µ−
B2

)(xy) ≤ (µ−
A1

∪µ−
A2

)(x)×
(µ−

A1
∪ µ−

A2
)(y), (µ+

B1
∪ µ+

B2
)(xy) ≤ (µ+

A1
∪ µ+

A2
)(x)× (µ+

A1
∪ µ+

A2
)(y). �

Proposition 2.9. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be crisp graphs with
V1 ∩ V2 = ∅. Let A1, A2, B1 and B2 be interval-valued fuzzy subset of V1, V2, E1

and E2 respectively. Then, G1 ∪G2 = (A1 ∪A2, B1 ∪B2) is a product interval-
valued fuzzy graph of G∗

1 ∪ G∗
2 if and only if G1 = (A1, B1) and G2 = (A2, B2)

are product interval-valued fuzzy graph of G∗
1 and G∗

2, respectively.

Proof. Let G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) be an product interval-valued fuzzy
graph of G∗

1 ∪G∗
2. Let xy ∈ E1. Then xy /∈ E2 and x, y ∈ V1. Hence

µ−
B1

(xy) = (µ−
B1

∪ µ−
B2

)(xy) ≤ (µ−
A1

∪ µ−
A2

)(x)× (µ−
A1

∪ µ−
A2

)(y)

= µ−
A1

(x)× µ−
A1

(y),

µ+
B1

(xy) = (µ+
B1

∪ µ+
B2

)(xy) ≤ (µ+
A1

∪ µ+
A2

)(x)× (µ+
A1

∪ µ+
A2

)(y)

= µ+
A1

(x)× µ+
A1

(y).

Therefore G1 = (A1, B1) is a product interval-valued fuzzy graphs. Similarly,
we can prove that G2 = (A2, B2) is a product interval-valued fuzzy graph. By
proposition (2.8) we get the converse. �

Proposition 2.10. Let G1 = (A1, B1) and G2 = (A2, B2) be product interval-
valued fuzzy graph of G∗

1 and G∗
2, respectively, and let V1∩V2 = ∅. Then G1∪G2

is complete if and only if G1 and G2 are complete.

Proof. It is obvious. �

Example 2.11. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be graphs such that
V1 = {a, b, c}, E1 = {ab, bc, ac}, V2 = {a, b, d} and E2 = {ab, bd}.
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Consider two interval-valued fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2)
defined by

A1 =

⟨(
a

0.2
,

b

0.3
,

c

0.2

)
,

(
a

0.1
,

b

0.4
,

c

0.5

)⟩
A2 =

⟨(
a

0.2
,

b

0.4
,

d

0.6

)
,

(
a

0.3
,

b

0.5
,

d

0.7

)⟩
B1 =

⟨(
ab

0.06
,

ac

0.04
,

bc

0.06

)
,

(
ab

0.04
,

ac

0.05
,
bc

0.2

)⟩
B2 =

⟨(
ab

0.08
,

ad

0.12

)
,

(
ab

0.15
,

ad

0.21

)⟩
.

We have
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(0.2, 0.3) (0.4, 0.5)
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(0.12, 0.21)

FIGURE 1. Union of G1 and G2 (G1 ∪G2)

It is clear that G1 and G2 are complete, but G1 ∪G2 is not.

Definition 2.12. The joint G1+G2 = (A1+A2, B1+B2) of two interval-valued
fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) is defined as follows:

(A)

{
(µ−

A1
+ µ−

A2
)(x) = (µ−

A1
∪ µ−

A2
)(x)

(µ+
A1

+ µ+
A2

)(x) = (µ+
A1

∪ µ+
A2

)(x)
if x ∈ V1 ∪ V2,

(B)

{
(µ−

B1
+ µ−

B2
)(xy) = (µ−

B1
∪ µ−

B2
)(xy)

(µ+
B1

+ µ+
B2

)(xy) = (µ+
B1

∪ µ+
B2

)(xy)
if xy ∈ E1 ∪ E2,

(C)

{
(µ−

B1
+ µ−

B2
)(xy) = µ−

A1
(x)× µ−

A2
(y)

(µ+
B1

+ µ+
B2

)(xy) = µ+
A1

(x)× µ+
A2

(y)
if xy ∈ E′,
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where E′ denote the set of all arcs joining the vertices V1 and V2.

Proposition 2.13. If G1 and G2 are product interval-valued fuzzy graph, then
G1 +G2 is a product interval-valued fuzzy graph.

Proof. In view of Proposition (2.8) it is sufficient to verify when xy ∈ E′. In
this case we have:

(µ−
B1

+ µ−
B2

)(xy) = µ−
A1

(x)× µ−
A2

(y) ≤ (µ−
A1

+ µ−
A2

)(x)× (µ−
A1

+ µ−
A2

)(y),

(µ+
B1

+ µ+
B2

)(xy) = µ+
A1

(x)× µ+
A2

(y) ≤ (µ+
A1

+ µ+
A2

)(x)× (µ+
A1

+ µ+
A2

)(y).

�

Example 2.14. In previous example we have
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(0.12, 0.21)

FIGURE 2. Join of G1 and G2 (G1 +G2)

It is clear that G1 and G2 are complete, but G1 +G2 is not complete.

Proposition 2.15. Let G1 and G2 be product interval-valued fuzzy graph such
that V1 ∩ V2 = ∅. Then, G1 +G2 is complete if and only if G1 and G2 are both
complete.

Proof. Let G1 and G2 be complete and u, v ∈ V1. Then

(µB−
1
+ µB−

2
)(uv) = µB−

1
(uv) = µA−

1
(u)× µA−

1
(v)

= (µA−
1
+ µA−

2
)(u)× (µA−

1
+ µA−

2
)(v),

(µB+
1
+ µB+

2
)(uv) = µB+

1
(uv) = µA+

1
(u)× µA+

1
(v)

= (µA+
1
+ µA+

2
)(u)× (µA+

1
+ µA+

2
)(v).

If u, v ∈ V2 then we have the same argument as above. Now Suppose that
u ∈ V1 and v ∈ V2. We get (µB−

1
+ µB−

2
)(uv) = µA−

1
(u) × µA−

2
(v), whereas

(µA−
1
+µA−

2
)(u)×(µA−

1
+µA−

2
)(v) = µA−

1
(u)×µA−

2
(v). Thus, (µB−

1
+µB−

2
)(uv) =

(µA−
1
+ µA−

2
)(u)× (µA−

1
× µA−

2
)(v). Also (µB+

1
+ µB+

2
)(uv) = µA+

1
(u)× µA+

2
(v)

whereas (µA+
1
+ µA+

2
)(u) × (µA+

1
+ µA+

2
)(v) = µA+

1
(u) × µA+

2
(v). Therefore,
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(µB+
1
+ µB+

2
)(uv) = (µA+

1
+ µA+

2
)(u) × (µA+

1
+ µA+

2
)(v). Hence, G1 + G2 is

complete.
Conversely, assume that G1 + G2 is complete. First we show that G1 is

complete. Let u, v ∈ V1. Then

(µB−
1
+ µB−

2
)(uv) = µB−

1
(uv), (5)

(µB+
1
+ µB+

2
)(uv) = µB+

1
(uv). (6)

Since G1 +G2 is complete,

(µ
B−

1
+ µ

B−
2
)(uv) = (µ

A−
1
+ µ

A−
2
)(u)× (µ

A−
1
+ µ

A−
2
)(v) = µ

A−
1
(u)× µ

A−
2
(v), (7)

(µ
B+

1
+ µ

B+
2
)(uv) = (µ

A+
1
+ µ

A+
2
)(u)× (µ

A+
1
+ µ

A+
2
)(v) = µ

A+
1
(u)× µ

A+
2
(v). (8)

Now using (5),(6),(7) and (8) we get µB−
1
(uv) = µA−

1
(u)×µA−

1
(v) and µB+

1
(uv) =

µA+
1
(u) × µA+

1
(v). Therefore G1 is complete. Similarly, we may prove that G2

is complete. �

Proposition 2.16. Let G1 and G2 be product interval-valued fuzzy graph of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively, such that V1 ∩ V2 = ∅. Then,

(G1 +G2)
c = Gc

1 ∪Gc
2.

Proof. Let u ∈ V1. Then, (µA−
1
+ µA−

2
)c(u) = (µA−

1
+ µA−

2
)(u) = µA−

1
(u) and

max(µc
A−

1

(u), µc
A−

2

(u)) = max(µA−
1
(u), µA−

2
(u)) = µA−

1
(u).

Hence (µA−
1
+ µA−

2
)c(u) = (µc

A−
1

∪ µc
A−

2

)(u). Similarly we can prove that

(µA−
1
+ µA−

2
)c(u) = (µc

A−
1

∪ µc
A−

2

)(u), for all u ∈ V2. Now suppose that uv ∈ X1.

Then u, v ∈ V1, and we have

(µB−
1
+ µB−

2
)c(uv) = (µA−

1
+ µA−

2
)(u)× (µA−

1
+ µA−

2
)(v)− (µB−

1
+ µB−

2
)(uv)

= µA−
1
(u)× µA−

1
(v)− µB−

1
(uv) = µc

B−
1
(uv).

Also we have max(µc
B−

1

(uv), µc
B−

2

(uv)) = µc
B−

1

(uv). Hence (µB−
1
+ µB−

2
)c(uv) =

(µc
B−

1

∪ µc
B−

2

)(uv). Similarly we can prove that (µB−
1
+ µB−

2
)c(uv) = (µc

B−
1

∪
µc
B−

2

)(uv), for all uv ∈ X2.

Now assume that (u, v) ∈ X ′. Then u ∈ V1 and v ∈ V2. Thus

(µB−
1
+ µB−

2
)c(uv) = (µA−

1
+ µA−

2
)(u)× (µA−

1
+ µA−

2
)(v)− (µB−

1
+ µB−

2
)(uv)

= µA−
1
(u)× µA−

1
(v)− (µA−

1
(u)× µA−

2
(v)) = 0.

Also max(µc
B−

1

(uv), µc
B−

2

(uv)) = 0, since u ∈ V1 and v ∈ V2. Therefore (G1 +

G2)
c = Gc

1 ∪Gc
2. �

Proposition 2.17. Let G1 and G2 be product interval-valued fuzzy graph. Then
(G1 ∪G2)

c = Gc
1 +Gc

2.
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Proof. Let u ∈ V1. Then, (µA−
1
∪ µA−

2
)c(u) = (µA−

1
∪ µA−

2
)(u) = µA−

1
(u) and

(µc
A−

1

+ µc
A−

2

)(u) = max(µc
A−

1

(u), µc
A−

2

(u)) = max(µA−
1
(u), µA−

2
(v)) = µA−

1
(u).

Hence, (µA−
1
∪ µA−

2
)c(u) = (µc

A−
1

+ µc
A−

2

)(u), for all u ∈ V1. Similarly we can

prove when u ∈ V2. Now suppose that uv ∈ X1, then

(µB−
1
∪ µB−

2
)c(uv) = (µA−

1
∪ µA−

2
)(u)× (µA−

1
∪ µA−

2
)(v)− (µB−

1
∪ µB−

2
)(uv)

µA−
1
(u)× µA−

1
(v)− µB−

1
(uv) = µc

B−
1
(uv) = (µc

B−
1
+ µc

B−
2
)(uv).

If uv ∈ X2, then u, v ∈ V2, and hence

(µB−
1
∪ µB−

2
)c(uv) = (µA−

1
∪ µA−

2
)(u)× (µA−

1
∪ µA−

2
)(v)− (µB−

1
∪ µB−

2
)(uv)

µA−
2
(u)× µA−

2
(v)− µB−

2
(uv) = µc

B−
2
(uv) = (µc

B−
1
+ µc

B−
2
)(uv).

If uv ∈ X ′, then u ∈ V1, and v ∈ V2. Hence,

(µB−
1
∪ µB−

2
)c(uv) = (µA−

1
∪ µA−

2
)(u)× (µA−

1
∪ µA−

2
)(v)− (µB−

1
∪ µB−

2
)(uv)

= µA−
1
(u)× µA−

2
(v) (Since µB−

1
(uv) = µB−

2
(uv) = 0)

= µc
A−

1
(u)× µc

A−
2
(v) = (µc

B−
1
+ µc

B−
2
)(uv).

Therefore (µB−
1

∪ µB−
2
)c = µc

B−
1

+ µc
B−

2

. Similarly, we get (µA+
1
∪ µA+

2
)c =

µc
A+

1

+µc
A+

2

and (µB+
1
∪µB+

2
)c = µc

B+
1

+µc
B+

2

. Let G∗
1 and G∗

2 be two graphs whose

vertex sets are V1 and V2, respectively. Consider a new graph G∗ = G∗
1 × G∗

2

whose vertex set is V1 × V2 and edge set is a subset of (V1 × V2)× (V1 × V2).
Let G1 and G2 be product interval-valued fuzzy graph of G∗

1 and G∗
2, respec-

tively. If v1 ∈ V1 and v2 ∈ V2, we define:
µ−
A1

×µ−
A2

(v1, v2) = µ−
A1

(v1)×µ−
A2

(v2) and µ+
A1

×µ+
A2

(v1, v2) = µ+
A1

(v1)×µ+
A2

(v2).
Also, if u1, v1 ∈ V1 and u2, v2 ∈ V2, then we define:

µ−
B1

× µ−
B2

((u1, u2)(v1, v2)) = µ−
B1

(u1v1)× µ−
B2

(u2v2),

µ+
B1

× µ+
B2

((u1, u2)(v1, v2)) = µ+
B1

(u1v1)× µ+
B2

(u2v2).

So, A = [µ−
A1

× µ−
A2

, µ+
A1

× µ+
A2

is an interval-valued fuzzy sub set on V =

V1 × V2 and B = [µ−
B1

× µ−
B2

, µ+
B1

× µ+
B2

is an interval-valued fuzzy subset of
(V1 × V2) × (V1 × V2). In fact G = (A,B) is an interval-valued fuzzy graph of
G∗

1 ×G∗
2 that is denoted by G1 ×G2. �

Proposition 2.18. Let G1 and G2 be product interval-valued fuzzy graph. Then
G1 ×G2 is a product interval-valued fuzzy graph.

Proof. Let u1, v1 ∈ V1 and u2, v2 ∈ V2. Then we have

(µB−
1
× µB−

2
)((u1, u2)(v1, v2)) = µB−

1
(u1v1)× µB−

2
(u2v2)

≤ (µA−
1
(u1)× µA−

1
(v1))× (µA−

2
(u2)× µA−

2
(v2))

= (µA−
1
(u1)× µA−

2
(u2))× (µA−

1
(v1)× µA−

2
(v2))

= (µA−
1
× µA−

2
)(u1, u2)× (µA−

1
× µA−

2
)(v1, v2).
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Similarly, we can prove that (µB+
1
×µB+

2
)((u1, u2)(v1, v2)) ≤ (µA+

1
×µA+

2
)(u1, u2)×

(µA+
1
× µA+

2
)(v1, v2), for all u1, v1 ∈ V1 and u2, v2 ∈ V2. This complete the

proof. �

Definition 2.19. The product interval-valued fuzzy graph G1 ×G2 is referred
to as the multiplication of the product interval-valued fuzzy graphs G1 and G2.

Proposition 2.20. Let G1 and G2 be product interval-valued fuzzy graph. Then,
G1 ×G2 is complete if and only if both G1 and G2 are complete.

Proof. Let G1 and G2 be complete, u1, v1 ∈ V1 and u2, v2 ∈ V2. Then

(µ−
B1

× µ−
B2

)((u1, u2)(v1, v2)) = µ−
B1

(u1v1)× µ−
B2

(u2v2)

= [µ−
A1

(u1)× µ−
A1

(v1)]× [µ−
A2

(u2)× µ−
A2

(v2)]

= [µ−
A1

(u1)× µ−
A1

(u2)]× [µ−
A1

(v1)× µ−
A2

(v2)]

= (µ−
A1

× µ−
A2

)(u1, u2)× (µ−
A1

× µ−
A2

)(v1, v2).

Similarly, we can prove that if u1, v1 ∈ V1 and u2, v2 ∈ V2, then

(µ+
B1

× µ+
B2

)((u1, u2)(v1, v2)) = (µ+
A1

× µ+
A2

)(u1, u2)× (µ+
A1

× µ+
A2

)(v1, v2)

Therefore G1 × G2 is complete. Conversely, let G1 × G2 be complete. We will
prove that G1 and G2 both are complete. Suppose that G1 is not complete.
Then, there exist u1, v1 ∈ V1 for which one of the following inequalities hold.

µ−
B1

(u1v1) < µ−
A1

(u1)× µ−
A1

(v1), µ+
B2

(u1v1) < µ+
A2

(u1)× µ+
A2

(v1).

Assume that µ−
B1

(u1v1) < µ−
A1

(u1)× µ−
A1

(v1).
Now by considering ((u1, u2), (v1, v2)) ∈ (V1 × V2)× (V1 × V2), we have

(µ−
B1

× µ−
B2

)((u1, u2), (v1, v2)) = µ−
B1

(u1v1)× µ−
B2

(u2v2)

< [µ−
A1

(u1)× µ−
A1

(v1)]× [µ−
A2

(u2)× µ−
A2

(v2)]

= [µ−
A1

(u1)× µ−
A2

(u2)]× [µ−
A1

(v1)× µ−
A2

(v2)]

= (µ−
A1

× µ−
A2

)(u1, u2)× (µ−
A1

× µ−
A2

)(v1, v2).

This is a contradiction, since G1 × G2 is complete. Similarly, if µ+
B2

(u1, v1) <
µA+

2
(u1)×µA+

2
(v1), a contradiction can be obtained. Hence G1 is complete. By

the same argument as above we can prove that G2 is complete. �

Proposition 2.21. Let V1 = {v11, v12, · · · , v1n} and V2 = {v21, v22, · · · , v2n} be
the vertex sets of graphs G1 and G2, respectively . Further, let G = (A,B) be
the multiplication of G1 and G2. Then the following equations have solutions in
[0, 1].
(i) xi × yi = µ−

A(v1i, v2j) (i = 1, 2, · · · , n, j = 1, 2, · · · ,m),

(ii) zik × wjl = µ−
B((v1i, v2j)(v1k, v2l)) (i, k = 1, 2, · · · , n, j, l = 1, 2, · · · ,m),

(iii) xi × yj = µ+
A(v1i, v2j) (i = 1, 2, · · · , n, j = 1, 2, · · · ,m)

(iv) zik × wjl = µ+
B((v1i, v2j)(v1k, v2l)) (i, k = 1, 2, · · · , n, j, l = 1, 2, · · · ,m).
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Proof. Let G be the multiplication of product interval-valued fuzzy graphs G1

and G2. Then (µ−
A, µ

−
B) = (µ−

A1
× µ−

A2
, µ−

B1
× µ−

B2
) and (µ+

A, µ
+
B) = (µ+

A1
×

µ+
A2

, µ+
B1

× µ+
B2

). Now we have

µ−
A(v1i, v2j) = (µ−

A1
× µ−

A2
)(v1i, v2j) = µA1(v1i)× µ−

A2
(v2j) = xi × yj ,

where xi = µ−
A1

(v1i) ∈ [0, 1] and yj = µ−
A2

(v2j) ∈ [0, 1]. If v1i, v1k ∈ V1 and
v2j , v2k ∈ V2, then

µ−
B((v1i, v2j)(v1k, v2l)) = (µ−

B1
× µ−

B2
)((v1i, v2j)(v1k, v2l))

= µ−
B1

(v1i, v1k)× µ−
B2

(v2j , v2l) = zik × wjl

where zik = µ−
B1

(v1i, v1k) ∈ [0, 1] and wjl = µ−
B2

(v2j , v2l) ∈ [0, 1]. Therefore, the
equations (i) and (ii) have solutions in [0, 1]. Similarly, by the same argument
as above we can prove that the equations (iii) and (iv) have solutions. �

Theorem 2.22. Let G∗ be a product of two graphs G∗
1 and G∗

2. Let G = (A,B)
be a product interval-valued fuzzy graph of G∗ where µ−

B and µ+
B are normal.

Moreover, suppose that the following equations have solutions in [0, 1],
(i) xi × yi = µ−

A(v1i, v2j) (i = 1, 2, · · · , n, j = 1, 2, · · · ,m),

(ii) zik × wjl = µ−
B((v1i, v2j)(v1k, v2l)) (i, k = 1, 2, · · · , n, j, l = 1, 2, · · · ,m, )

(iii) si × tj = µ+
A(v1i, v2j) (i = 1, 2, · · · , n, j = 1, 2, · · · ,m),

(iv) pik × wjl = µ+
B((v1i, v2j)(v1k, v2l)) (i, k = 1, 2, · · · , n, j, l = 1, 2, · · · ,m).

Then G is the multiplication of a product interval-valued fuzzy graph of G∗
1 and

a product interval-valued fuzzy graph of G∗
2.

Proof. Define
µ−
A1

: V1 −→ [0, 1], µ−
A1

(v1i) = xi

µ−
A2

: V2 −→ [0, 1], µ−
A2

(v2i) = yj
µ−
B1

: V1 × V1 −→ [0, 1], µ−
B1

(v1i, v1k) = zik
µ−
B2

: V2 × V2 −→ [0, 1], µ−
B2

(v2i, v2k) = wjl

µ+
A1

: V1 −→ [0, 1], µ+
A1

(v1i) = si
µ+
A2

: V2 −→ [0, 1], µ+
A2

(v2j) = tj
µ+
B1

: V1 × V1 −→ [0, 1], µ+
B1

(v1i, v1k) = rik
µ+
B2

: V2 × V2 −→ [0, 1], µ+
B2

(v2i, v2l) = ujl.
We will prove the following.
(i) G1 = (A1, B1) is a product interval-valued fuzzy graph of G∗

1.
(ii) G2 = (A2, B2) is a product interval-valued fuzzy graph of G∗

2.
(iii) µ−

A = µ−
A1

× µ−
A2

, µ−
B = µ−

B1
× µ−

B2
.

(iv) µ+
A = µ+

A1
× µ+

A2
, µ+

B = µ+
B1

× µ+
B2

.
If v1i, v1k ∈ V1 then for all v2j , v2l ∈ V2 we have

µ−
B((v1i, v2j)(v1k, v2l)) ≤ µ−

A(v1i, v2j)× µ−
A(v1k, v2l)

(xi × yi)× (xk × yl) = (xi × xk)× (yj × yl)

≤ xi × xk (Since yj , yl ≤ 1).
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Hence, zik×wjl ≤ µ−
A1

(v1i)×µ−
A1

(v1k), for all j, l. Since µ
−
B is normal, µ−

B((v1p, v2a)
(v1q, v2b)) = 1, for some p, q, a and b. Thus zpq ×wab = 1, and so zpq = wab = 1
(Since zpq.wab ∈ [0, 1]). Replacing j by a and l by b, we get

µ−
B1

(v1i) = z1k = z1k × wab ≤ µ−
A1

(v1i)× µA1(v1k).

Similarly, we can get µ+
B1

(v1i) ≤ µ+
A1

(v1i) × µ+
A1

(v1k). This prove that G1 =
(A1, B1) is a product interval-valued fuzzy graph of G∗

1. Similarly, we can prove
that G2 = (A2, B2) is a product fuzzy graph of G∗

2. Now if v1i ∈ V1 and v2i ∈ V2,
then

µ−
A1

× µ−
A2

(v1i, v2i) = µ−
A1

(v1i)× µ−
A2

(v2i) = xi × yi = µ−
A(v1i, v2i)

µ+
A1

× µ+
A2

(v1i, v2i) = µ+
A1

(v1i)× µ+
A2

(v2i) = si × tj = µ+
A(v1i, v2i).

This prove that µ−
A = µ−

A1
× µ−

A2
and µ+

A = µ+
A1

× µ+
A2

. If v1i, v1k ∈ V1 and
v2i, v2k ∈ V2, then

µ−
B1

× µ−
B2

((v1i, v2j)(v1k, v2l)) = µ−
B1

(v1i, v1i)× µ−
B2

(v2j , v2l)

= z1k × wjl = µ−
B(v1i, v2j)(v1k, v2l)).

Thus, µ−
B = µ−

B1
× µ−

B2
. Similarly, we can prove that µB+ = µ+

B1
× µ+

B2
. �

3. Application of related theorems

An interval-valued fuzzy set is an extension of Zadeh’s fuzzy set theory whose
range of membership degree is [0, 1]. The interval-valued fuzzy graph is a gen-
eralized structure of a fuzzy graph which gives more precision, flexibility, and
compatibility with a system when compared with the fuzzy graphs. The nat-
ural extension of the research work on interval-valued fuzzy graph is product
interval-valued fuzzy graphs. Note that one of the most widely studied classes
of interval-valued fuzzy graphs is product interval-valued fuzzy graph. They
show up in many contexts. These results can be applied in database theory, ge-
ographical information system roughness in graphs, roughness in hyper- graphs,
soft graphs, and soft hypergraphs. Fuzzy cognitive maps (FCMs) are used in
science, engineering, and the social sciences to represent the causal structure
of a body of knowledge (be it empirical knowledge, traditional knowledge, or a
personal view); for some examples. An FCM of the type that we shall consider
in this paper is described by a set of factors and causal relationships between
pairs of factors. A factor can have a direct positive or direct negative impact
(or both) on another factor or on itself. In addition, a numerical weight is
assigned to each direct impact; these weights are usually taken to be in the
interval [0, 1]. Graph-theoretic tools are used to analyze FCMs. In particular,
algorithms for computing a transitive closure of the FCM, from which all, not
just direct, impacts together with their weights can be read. Two models can
be constructed in the probabilistic model, the absolute value of the weight of
an impact is interpreted as the probability that the impact occurs, while in the
fuzzy model, it is interpreted as the degree of truth. In both cases, the FCM
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is represented as an interval-valued fuzzy directed graph; the definition of the
transitive closure, however, depends on the model. Here, product interval-valued
fuzzy graphs are introduced to improve the solution of the problems. The prob-
lem of the probabilistic transitive closure of an interval-valued fuzzy directed
graph is an interval-valued version of the network reliability problem called s,
t-connectedness (for all pairs of vertices s and t). Some of these results men-
tioned in the paper will help the reduction-recovery algorithm, complete state
enumeration, the basic inclusion-exclusion algorithm, and the boolean algebra
approach. This adaptation is far from trivial, as care must be taken to generate
not only directed paths, but rather all minimal directed walks, and to distinguish
between positive and negative minimal directed walks.

4. Conclusions

Graph theory has several interesting applications in system analysis, opera-
tions research, computer applications, and economics. Since most of the time
the aspects of graph problems are uncertain, it is nice to deal with these aspects
via the methods of fuzzy systems. It is known that fuzzy graph theory has nu-
merous applications in modern science and engineering, neural networks, expert
systems, medical diagnosis, town planning and control theory. In this paper, we
have introduced product interval-valued fuzzy graphs and proved several inter-
esting results which are analogous to interval-valued fuzzy graphs. In our future
work, we will focus on applications of product interval-valued fuzzy graphs in
other sciences.
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