DOI QR코드

DOI QR Code

DCCA 방법으로 연결된 한반도의 기온 네트워크 분석

Temperature network analysis of the Korean peninsula linking by DCCA methodology

  • Min, Seungsik (Department of Natural Science, Korea Naval Academy)
  • 투고 : 2016.11.14
  • 심사 : 2016.12.23
  • 발행 : 2016.12.31

초록

본 논문에서는 1976년부터 2015년까지 40년 간, 59개 지역 기온 시계열을 대상으로 degrended cross-correlation analysis(DCCA) 방법을 이용한 상관 계수를 도출하였다. 4년 단위의 평균기온, 최고기온, 최저기온 시계열을 분석하여 상관계수 값이 0.9 이상이면 단위 기간 동안 두 지역의 온도 상관성이 존재하는 것으로 판단하고, 두 지역 간의 연결선을 만드는 방식으로 네트워크를 구축하였다. 이후 네트워크 이론을 바탕으로 평균 경로 길이, 결집 계수, 유사성, 모듈성 등의 값들을 도출하였다. 그 결과, 기온 네트워크는 좁은 세상 성질을 만족하고, 유사성과 모듈성이 높은 네트워크임을 알 수 있었다.

This paper derives a correlation coefficient using detrended cross-correlation analysis (DCCA) method for 59 regional temperature series for 40 years from 1976 to 2015. The average temperature, maximum temperature, and minimum temperature series for 4 year units are analyzed; consequently, we estimated that a temperature correlation exists between the two regions during the unit period where the correlation coefficient is greater than or equal to 0.9; subsequently, we construct a network linking the two regions. Based on network theory, average path length, clustering coefficient, assortativity, and modularity were derived. As a result, it was found that the temperature network satisfies a small-worldness property and is a network having assortativity and modularity.

키워드

참고문헌

  1. Abe, S. and Suzuki, N. (2003). Law for the distance between successive earthquakes, Journal of Geophysical Research, 108, 2113-2116.
  2. Albert, R. and Barabasi, A. (2002). Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47-97. https://doi.org/10.1103/RevModPhys.74.47
  3. Estrada, E. and Hatano, N. (2008). Communicability in complex networks, Physical Review E, 77, 036111. https://doi.org/10.1103/PhysRevE.77.036111
  4. Greene, L. and Higman, V. (2003). Uncovering Network Systems within Protein Structures, Journal of Molecular Biology, 334, 781-791. https://doi.org/10.1016/j.jmb.2003.08.061
  5. Horvatic, D., Stanley, H. E., and Podobnik, B. (2011). Detrended cross-correlation analysis for non-stationary time series with periodic trends, EPL (Europhysics Letters), 94, 18007. https://doi.org/10.1209/0295-5075/94/18007
  6. Kang, B. (2010). Science of the complex network: information science of 21st century, Asan Foundation Research Report, 124, Jipmoondang Press, Seoul.
  7. Kang, K. and Ahn H. (2006). Functional data analysis of temperature and precipitation data, The Korean Journal of Applied Statistics, 19, 431-445. https://doi.org/10.5351/KJAS.2006.19.3.431
  8. Kim, H., Do, H., and Kim, Y. (2013). A modeling of daily temperature in Seoul using GLM weather generator, The Korean Journal of Applied Statistics, 26, 413-420. https://doi.org/10.5351/KJAS.2013.26.3.413
  9. Kim, N. and Kim, G. (2013). A study on changes of the spatio-temporal distribution of temperature in Korea peninsular during the past 40 years, Journal of the Korean Association of Geographic Information Studies, 16, 29-38. https://doi.org/10.11108/kagis.2013.16.4.029
  10. Ko, W. (2007). Estimation for the change of daily maxima temperature, The Korean Journal of Applied Statistics, 20, 1-9. https://doi.org/10.5351/KJAS.2007.20.1.001
  11. Lee, J. and Sohn, K. (2008). Trends in the climate change of surface temperature using structural time series model, Atmosphere, 18, 199-206.
  12. Min, S. and Kim, K. (2014). Topological properties of networks in structural classification of proteins, Journal of the Korean Physical Society, 65, 1164-1169. https://doi.org/10.3938/jkps.65.1164
  13. Min, S. and Lim, G. (2016). Analysis of Ocean Time Series by DCCA(detrended cross-correlation analysis) Methodology. In Proceedings of the 2016 Conference for the Korea Institute of Military Science and Technology.
  14. Newmann, M. E. (2002). Assortative mixing in networks, Physical Review Letters, 89, 208701. https://doi.org/10.1103/PhysRevLett.89.208701
  15. Newmann, M. E. (2004). Analysis of weighted networks, Physical Review E, 70, 056131. https://doi.org/10.1103/PhysRevE.70.056131
  16. Newmann, M. E. (2006). Modularity and Community Structure in Networks. In Proceedings of the National Academy of Sciences of the United States of America, 103, 8577. https://doi.org/10.1073/pnas.0601602103
  17. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L., and Stanley, H. (2000). Econophysics: financial time series from a statistical physics point of view, Physica A: Statistical Mechanics and its Applications, 279, 443-456. https://doi.org/10.1016/S0378-4371(00)00010-8
  18. Podobnik, B. and Stanley, H. (2008). Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series, Physical Review Letters, 100, 084102. https://doi.org/10.1103/PhysRevLett.100.084102
  19. Podobnik, B., Jiang, Z., Jhou, W., and Stanley, H. (2011). Statistical tests for power-law cross-correlated processes, Physical Review E, 84, 066118. https://doi.org/10.1103/PhysRevE.84.066118
  20. Sohn, K., Lee, E., and Lee, J. (2008). Detection and forecast of climate change dignal over the Korean peninsula, The Korean Journal of Applied Statistics, 21, 705-716. https://doi.org/10.5351/KJAS.2008.21.4.705
  21. Wang, C., Chan, C., and Ho, K. (1989). Empirical tight-binding force model for molecular-dynamics simulation of Si, Physical Review B, 39, 8586. https://doi.org/10.1103/PhysRevB.39.8586
  22. Yook, S., Oltvai, Z., and Barabasi, A. (2004). Functional and topological characterization of protein interaction networks, Proteomics, 4, 928-942. https://doi.org/10.1002/pmic.200300636