참고문헌
- Choo, K.-K., Oh, S.-D., and Kim, Y.-J. (2012). Faults diagnosis of wind turbine using MTS techniques, Proceedings of the Korean Institute of the Industrial Engineers/The Korean Operations Research and Management Science Society, 2406-2416.
- Chun, H.-Y., Park, G.-T., Park, S.-Y., and Kim, In.-S. (1987). A study of instrument failure detection in PWR pressurizer, The Transaction of the Korean Institute of Electrical Engineers, 36, 70-76.
- Hong, J.-E. (2009). Analysis of multivariate system using Mahalanobis Taguchi system, Journal of the Society of Korea Industrial and Systems Engineering, 32, 20-25.
- Jin, X. and Chow, T. W. S. (2013). Anomaly detection of cooling fan and fault classification of induction motor using Mahalanobis-Taguchi system, Expert Systems and Applications, 40, 5787-5795. https://doi.org/10.1016/j.eswa.2013.04.024
- Lee, C. Y. (1992). Fault diagnosis of a PWR pressurizer using an artificial neural network, Proceedings of The Institute of Electronics Engineers of Korea, 210-219.
- Oh, S.-H., Kim, D.-I., Zhu, O.-P., and Kim, K.-J. (1996). A study on the failure detection and validation of pressurizer level sensor signal in nuclear power plant, The Transaction of the Korean Institute of Electrical Engineers, 45, 1460-1466.
- Park, J. H., Lee, D. H., and Lee, S. (2002). Failure diagnosis of pressurizer in PWR, Proceedings of Korean Society of Precision Engineering, 474-477.
- Park, S. G., Park, W. S., Lee, Y. Y., Kim, D. S., and Oh, J. E. (2008). A fault diagnosis on the rotating machinery using MTS, Transactions of the Korean Society for Noise and Vibration Engineering, 18, 619-623. https://doi.org/10.5050/KSNVN.2008.18.6.619
- Soylemezoglu, A., Jagannathan, S., and Saygin, C. (2010). Mahalanobis Taguchi system (MTS) as a prognostics tool for rolling element bearing failures, Journal of Manufacturing Science and Engineering, 132.
- Taguchi, G. and Jugulum, R. (2002). The Mahalanobis-Taguchi Strategy: A Pattern Technology System, John Wiley & Sons, New York.
- Tylee, J. L. (1982). A generalized likelihood ratio approach to detecting and identifying failures in pressurizer instrumentation, Nuclear Technology, 56, 484-492. https://doi.org/10.13182/NT82-A32907
- Wang, Z., Wang, Z., Tao, L., and Ma, J. (2012). Fault diagnosis for bearing based on Mahalanobis-Taguchi system, Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), 1-5.
- Willsky, A. S. and Jones, H. L. (1976). A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems, IEEE Transactions on Automatic Control, 21, 108-112. https://doi.org/10.1109/TAC.1976.1101146