DOI QR코드

DOI QR Code

DNA damage to human genetic disorders with neurodevelopmental defects

  • Lee, Youngsoo (Genomic Instability Research Center and Department of Biomedical Sciences, Ajou University School of Medicine) ;
  • Choi, Inseo (Genomic Instability Research Center and Department of Biomedical Sciences, Ajou University School of Medicine) ;
  • Kim, Jusik (Genomic Instability Research Center and Department of Biomedical Sciences, Ajou University School of Medicine) ;
  • Kim, Keeeun (Genomic Instability Research Center and Department of Biomedical Sciences, Ajou University School of Medicine)
  • 투고 : 2015.11.02
  • 심사 : 2015.11.23
  • 발행 : 2016.06.30

초록

Although some mutations are beneficial and are the driving force behind evolution, it is important to maintain DNA integrity and stability because it contains genetic information. However, in the oxygen-rich environment we live in, the DNA molecule is under constant threat from endogenous or exogenous insults. DNA damage could trigger the DNA damage response (DDR), which involves DNA repair, the regulation of cell cycle checkpoints, and the induction of programmed cell death or senescence. Dysregulation of these physiological responses to DNA damage causes developmental defects, neurological defects, premature aging, infertility, immune system defects, and tumors in humans. Some human syndromes are characterized by unique neurological phenotypes including microcephaly, mental retardation, ataxia, neurodegeneration, and neuropathy, suggesting a direct link between genomic instability resulting from defective DDR and neuropathology. In this review, rare human genetic disorders related to abnormal DDR and damage repair with neural defects will be discussed.

키워드

참고문헌

  1. Kelner A. Effect of visible light on the recovery of streptomyces griseus conidia from ultra-violet irradiation injury. Proc Natl Acad Sci U S A 1949;35:73-9. https://doi.org/10.1073/pnas.35.2.73
  2. Kelner A. Photoreactivation of ultraviolet-irradiated escherichia coli, with special reference to the dose-reduction principle and to ultraviolet-induced mutation. J Bacteriol 1949;58:511-22.
  3. Friedberg EC. DNA repair and mutagenesis. 2nd ed. Washington, D.C.: ASM Press, 2006.
  4. Nigg EA. Genome instability in cancer development. New York: Springer, 2005.
  5. Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet 2008;9:619-31. https://doi.org/10.1038/nrg2380
  6. Madabhushi R, Pan L, Tsai LH. DNA damage and its links to neurodegeneration. Neuron 2014;83:266-82. https://doi.org/10.1016/j.neuron.2014.06.034
  7. Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 2015;66:129-43. https://doi.org/10.1146/annurev-med-081313-121208
  8. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell 2007;130:991-1004. https://doi.org/10.1016/j.cell.2007.08.043
  9. McKinnon PJ. Maintaining genome stability in the nervous system. Nat Neurosci 2013;16:1523-9. https://doi.org/10.1038/nn.3537
  10. McKinnon PJ. DNA repair deficiency and neurological disease. Nat Rev Neurosci 2009;10:100-12. https://doi.org/10.1038/nrn2559
  11. Abner CW, McKinnon PJ. The DNA double-strand break response in the nervous system. DNA Repair (Amst) 2004;3:1141-7. https://doi.org/10.1016/j.dnarep.2004.03.009
  12. Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in doublestrand break repair and telomere maintenance. FEBS Lett 2010;584:3682-95. https://doi.org/10.1016/j.febslet.2010.07.029
  13. You Z, Bailis JM. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 2010;20:402-9. https://doi.org/10.1016/j.tcb.2010.04.002
  14. Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press, 1995.
  15. Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 2006;124:287-99. https://doi.org/10.1016/j.cell.2005.12.030
  16. Yano K, Morotomi-Yano K, Akiyama H. Cernunnos/XLF: a new player in DNA double-strand break repair. Int J Biochem Cell Biol 2009;41:1237-40. https://doi.org/10.1016/j.biocel.2008.10.005
  17. Rolig RL, McKinnon PJ. Linking DNA damage and neurodegeneration. Trends Neurosci 2000;23:417-24. https://doi.org/10.1016/S0166-2236(00)01625-8
  18. Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 2010;9:1229-40.
  19. Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 2011;12:90-103. https://doi.org/10.1038/nrm3047
  20. Williams GJ, Lees-Miller SP, Tainer JA. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 2010;9:1299-306. https://doi.org/10.1016/j.dnarep.2010.10.001
  21. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 2014;15:7-18.
  22. Lowndes NF. The interplay between BRCA1 and 53BP1 influences death, aging, senescence and cancer. DNA Repair (Amst) 2010;9:1112-6. https://doi.org/10.1016/j.dnarep.2010.07.012
  23. Chapman JR, Sossick AJ, Boulton SJ, Jackson SP. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci 2012;125:3529-34. https://doi.org/10.1242/jcs.105353
  24. Daley JM, Sung P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 2014;34:1380-8. https://doi.org/10.1128/MCB.01639-13
  25. Nam EA, Cortez D. ATR signalling: more than meeting at the fork. Biochem J 2011;436:527-36. https://doi.org/10.1042/BJ20102162
  26. Bakkenist CJ, Kastan MB. Chromatin perturbations during the DNA damage response in higher eukaryotes. DNA Repair (Amst) 2015;36:8-12. https://doi.org/10.1016/j.dnarep.2015.09.002
  27. Shiloh Y. ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res 2014;329:154-61. https://doi.org/10.1016/j.yexcr.2014.09.002
  28. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013;14:197-210. https://doi.org/10.1038/nrm3546
  29. Ambrose M, Gatti RA. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 2013;121:4036-45.
  30. Teive HA, Moro A, Moscovich M, Arruda WO, Munhoz RP, Raskin S, et al. Ataxia-telangiectasia-A historical review and a proposal for a new designation: ATM syndrome. J Neurol Sci 2015;355:3-6. https://doi.org/10.1016/j.jns.2015.05.022
  31. Huh HJ, Cho KH, Lee JE, Kwon MJ, Ki CS, Lee PH. Identification of ATM mutations in Korean siblings with ataxia-telangiectasia. Ann Lab Med 2013;33:217-20. https://doi.org/10.3343/alm.2013.33.3.217
  32. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damagedependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002;30:290-4. https://doi.org/10.1038/ng845
  33. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000;404:613-7. https://doi.org/10.1038/35007091
  34. Digweed M, Sperling K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 2004;3:1207-17. https://doi.org/10.1016/j.dnarep.2004.03.004
  35. Shimada H, Shimizu K, Mimaki S, Sakiyama T, Mori T, Shimasaki N, et al. First case of aplastic anemia in a Japanese child with a homozygous missense mutation in the NBS1 gene (I171V) associated with genomic instability. Hum Genet 2004;115:372-6.
  36. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 2004;3:1219-25. https://doi.org/10.1016/j.dnarep.2004.04.009
  37. Baple EL, Chambers H, Cross HE, Fawcett H, Nakazawa Y, Chioza BA, et al. Hypomorphic PCNA mutation underlies a human DNA repair disorder. J Clin Invest 2014;124:3137-46. https://doi.org/10.1172/JCI74593
  38. Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNAprotein interactions for genome stability. Nat Rev Mol Cell Biol 2013;14:269-82. https://doi.org/10.1038/nrm3562
  39. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007;129:665-79. https://doi.org/10.1016/j.cell.2007.05.003
  40. O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004;3:1227-35. https://doi.org/10.1016/j.dnarep.2004.03.025
  41. Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet Part A 2005;137A:283-7. https://doi.org/10.1002/ajmg.a.30869
  42. Chistiakov DA, Voronova NV, Chistiakov AP. Ligase IV syndrome. Eur J Med Genet 2009;52:373-8. https://doi.org/10.1016/j.ejmg.2009.05.009
  43. Ogi T, Walker S, Stiff T, Hobson E, Limsirichaikul S, Carpenter G, et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome. PLoS Genet 2012;8:e1002945. https://doi.org/10.1371/journal.pgen.1002945
  44. Mokrani-Benhelli H, Gaillard L, Biasutto P, Le Guen T, Touzot F, Vasquez N, et al. Primary microcephaly, impaired DNA replication, and genomic instability caused by compound heterozygous ATR mutations. Hum Mutat 2013;34:374-84. https://doi.org/10.1002/humu.22245
  45. Tanaka A, Weinel S, Nagy N, O'Driscoll M, Lai-Cheong JE, Kulp-Shorten CL, et al. Germline mutation in ATR in autosomal- dominant oropharyngeal cancer syndrome. Am J Hum Genet 2012;90:511-7. https://doi.org/10.1016/j.ajhg.2012.01.007
  46. Borglum AD, Balslev T, Haagerup A, Birkebaek N, Binderup H, Kruse TA, et al. A new locus for Seckel syndrome on chromosome 18p11.31-q11.2. Eur J Hum Genet 2001;9:753-7. https://doi.org/10.1038/sj.ejhg.5200701
  47. Shaheen R, Faqeih E, Ansari S, Abdel-Salam G, Al-Hassnan ZN, Al-Shidi T, et al. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res 2014;24:291-9. https://doi.org/10.1101/gr.160572.113
  48. Qvist P, Huertas P, Jimeno S, Nyegaard M, Hassan MJ, Jackson SP, et al. CtIP mutations cause Seckel and Jawad syndromes. PLoS Genet 2011;7:e1002310. https://doi.org/10.1371/journal.pgen.1002310
  49. Makharashvili N, Paull TT. CtIP: a DNA damage response protein at the intersection of DNA metabolism. DNA Repair (Amst) 2015;32:75-81. https://doi.org/10.1016/j.dnarep.2015.04.016
  50. Hassan MJ, Chishti MS, Jamal SM, Tariq M, Ahmad W. A syndromic form of autosomal recessive congenital microcephaly (Jawad syndrome) maps to chromosome 18p11.22-q11.2. Hum Genet 2008;123:77-82. https://doi.org/10.1007/s00439-007-0452-x
  51. Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS. Novel CENPJ mutation causes Seckel syndrome. J Med Genet 2010;47:411-4. https://doi.org/10.1136/jmg.2009.076646
  52. Dauber A, Lafranchi SH, Maliga Z, Lui JC, Moon JE, McDeed C, et al. Novel microcephalic primordial dwarfism disorder associated with variants in the centrosomal protein ninein. J Clin Endocrinol Metab 2012;97:E2140-51. https://doi.org/10.1210/jc.2012-2150
  53. Kalay E, Yigit G, Aslan Y, Brown KE, Pohl E, Bicknell LS, et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat Genet 2011;43:23-6. https://doi.org/10.1038/ng.725
  54. Sir JH, Barr AR, Nicholas AK, Carvalho OP, Khurshid M, Sossick A, et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat Genet 2011;43:1147-53. https://doi.org/10.1038/ng.971
  55. Shanske A, Caride DG, Menasse-Palmer L, Bogdanow A, Marion RW. Central nervous system anomalies in Seckel syndrome: report of a new family and review of the literature. Am J Med Genet 1997;70:155-8. https://doi.org/10.1002/(SICI)1096-8628(19970516)70:2<155::AID-AJMG10>3.0.CO;2-I
  56. Ronchi D, Di Fonzo A, Lin W, Bordoni A, Liu C, Fassone E, et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 2013;92:293-300. https://doi.org/10.1016/j.ajhg.2012.12.014
  57. Devgan SS, Sanal O, Doil C, Nakamura K, Nahas SA, Pettijohn K, et al. Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxiatelangiectasia. Cell Death Differ 2011;18:1500-6. https://doi.org/10.1038/cdd.2011.18
  58. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 2009;136:420-34. https://doi.org/10.1016/j.cell.2008.12.042
  59. Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst) 2014;19:114-29. https://doi.org/10.1016/j.dnarep.2014.03.020
  60. Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002;32:267-72. https://doi.org/10.1038/ng987
  61. El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005;434:108-13. https://doi.org/10.1038/nature03314
  62. Pype S, Declercq W, Ibrahimi A, Michiels C, Van Rietschoten JG, Dewulf N, et al. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. J Biol Chem 2000;275:18586-93. https://doi.org/10.1074/jbc.M000531200
  63. Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW. A human 5'-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 2009;461:674-8. https://doi.org/10.1038/nature08444
  64. Gomez-Herreros F, Schuurs-Hoeijmakers JH, McCormack M, Greally MT, Rulten S, Romero-Granados R, et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet 2014;46:516-21. https://doi.org/10.1038/ng.2929
  65. McKinnon PJ. TDP2 keeps the brain healthy. Nat Genet 2014;46:419-21. https://doi.org/10.1038/ng.2967
  66. Clements PM, Breslin C, Deeks ED, Byrd PJ, Ju L, Bieganowski P, et al. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair (Amst) 2004;3:1493-502. https://doi.org/10.1016/j.dnarep.2004.06.017
  67. Gueven N, Becherel OJ, Kijas AW, Chen P, Howe O, Rudolph JH, et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum Mol Genet 2004;13:1081-93. https://doi.org/10.1093/hmg/ddh122
  68. Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006;443:713-6. https://doi.org/10.1038/nature05164
  69. Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001;29:184-8. https://doi.org/10.1038/ng1001-184
  70. Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001;29:189-93. https://doi.org/10.1038/ng1001-189
  71. Aicardi J, Barbosa C, Andermann E, Andermann F, Morcos R, Ghanem Q, et al. Ataxia-ocular motor apraxia: a syndrome mimicking ataxiatelangiectasia. Ann Neurol 1988;24:497-502. https://doi.org/10.1002/ana.410240404
  72. van Minkelen R, Guitart M, Escofet C, Yoon G, Elfferich P, Bolman GM, et al. Complete APTX deletion in a patient with ataxia with oculomotor apraxia type 1. BMC Med Genet 2015;16:61.
  73. Yoon G, Westmacott R, Macmillan L, Quercia N, Koutsou P, Georghiou A, et al. Complete deletion of the aprataxin gene: ataxia with oculomotor apraxia type 1 with severe phenotype and cognitive deficit. BMJ Case Rep 2009. doi: 10.1136/bcr.08.2008.0688.
  74. Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 2004;36:225-7. https://doi.org/10.1038/ng1303
  75. Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R, Nakamura J, et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 2007;177:969-79. https://doi.org/10.1083/jcb.200701042
  76. Al Tassan N, Khalil D, Shinwari J, Al Sharif L, Bavi P, Abduljaleel Z, et al. A missense mutation in PIK3R5 gene in a family with ataxia and oculomotor apraxia. Hum Mutat 2012;33:351-4. https://doi.org/10.1002/humu.21650
  77. Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 1999;274:24176-86. https://doi.org/10.1074/jbc.274.34.24176
  78. Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010;42:245-9. https://doi.org/10.1038/ng.526
  79. Bras J, Alonso I, Barbot C, Costa MM, Darwent L, Orme T, et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet 2015;96:474-9. https://doi.org/10.1016/j.ajhg.2015.01.005
  80. Jette N, Lees-Miller SP. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol 2015;117:194-205. https://doi.org/10.1016/j.pbiomolbio.2014.12.003
  81. Woodbine L, Neal JA, Sasi NK, Shimada M, Deem K, Coleman H, et al. PRKDC mutations in a SCID patient with profound neurological abnormalities. J Clin Invest 2013;123:2969-80. https://doi.org/10.1172/JCI67349
  82. Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat 2007;28:356-64.
  83. Dutrannoy V, Demuth I, Baumann U, Schindler D, Konrat K, Neitzel H, et al. Clinical variability and novel mutations in the NHEJ1 gene in patients with a Nijmegen breakage syndrome-like phenotype. Hum Mutat 2010;31:1059-68. https://doi.org/10.1002/humu.21315
  84. Tomkinson AE, Mackey ZB. Structure and function of mammalian DNA ligases. Mutat Res 1998;407:1-9. https://doi.org/10.1016/S0921-8777(97)00050-5
  85. O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001;8:1175-85. https://doi.org/10.1016/S1097-2765(01)00408-7
  86. IJspeert H, Warris A, van der Flier M, Reisli I, Keles S, Chishimba S, et al. Clinical spectrum of LIG4 deficiency is broadened with severe dysmaturity, primordial dwarfism, and neurological abnormalities. Hum Mutat 2013;34:1611-4.
  87. Murray JE, van der Burg M, IJspeert H, Carroll P, Wu Q, Ochi T, et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am J Hum Genet 2015;96:412-24. https://doi.org/10.1016/j.ajhg.2015.01.013
  88. de Bruin C, Mericq V, Andrew SF, van Duyvenvoorde HA, Verkaik NS, Losekoot M, et al. An XRCC4 splice mutation associated with severe short stature, gonadal failure, and early-onset metabolic syndrome. J Clin Endocrinol Metab 2015;100:E789-98. https://doi.org/10.1210/jc.2015-1098
  89. Guo C, Nakazawa Y, Woodbine L, Bjorkman A, Shimada M, Fawcett H, et al. XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency. J Allergy Clin Immunol 2015;136:1007-17. https://doi.org/10.1016/j.jaci.2015.06.007