

산채류 자원의 가공소재화

Processing Materials of Edible Wild Herbs and Vegetables

김은미 Eunmi Kim

한국식품연구원 Korea Food Research Institute

초록

대부분의 산채는 한 계절에만 생산되므로 연중 공급될 수 있는 건조 상태로 유통된다. 건조 산채에 필요한 제품화 기술로는 재수화시간 단축기술, 간편 즉석 산채와 즉석 조리 산채의 제품화 기술 등이다. 식품소재로의 응용분야 확대를 위해서는 산채를 미분화하여 일반식품소재화 하는 방법이 적합하다. 그러나 전분함량이 낮은 산채류는 분쇄력이 가해지기 어려워 공업 규모에서의 미분말 제조가 곤란하고 비용적인 문제로 용도가 제한된다. 따라서 산채의식품소재화 공정에서 중요한 핵심기술은 분쇄이므로 저비용에서의 미분말 제조기술 개발이 필요하다.

I. 서론

산채(山菜)란 인위적으로 개량 · 육성되어 재배하는 작물이 아닌 산이나 들에서 자연적으로 자라며 식용할 수 있는 식물 모두를 일컬어 말한다. 이경우 어원상 '야생식용식물'이라고 부르는 것이 적합한 표현이지만 대개 산채로 통용되고 있다. 산채는 80년대 이전에는 농산촌 주민들의 귀중한 구황식물 또는 현금수입원으로 활용되었으나 80년대에들어서 그 가치가 재평가되면서 산채시험장(강원도 평창군 소재)이라는 전문연구기관도 설립되고일반인의 산채에 대한 관심도 기하급수적으로 높아지고 있다(1).

우리나라 산야에는 약 480여 종의 식물이 식용으로 이용될 수 있는 것으로 알려져 있다. 그 중 줄기,

62, Anyangpangyo-ro 1201beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13539, Korea

Tel: +82-31-780-9287 Fax: +82-31-780-9154 Email: kem@kfri.re.kr

^{*} Corresponding Author: Eunmi Kim Korea Food Research Institute,

잎을 이용할 수 있는 종류는 353종으로 가장 많고, 뿌리를 이용할 수 있는 종류는 32종, 종자 및 과실을 이용할 수 있는 종류는 90여 종에 이른다. 그러나 실제로 농가에서 재배되고 있는 종류는 30여 종에 불과하며 그 중에서도 주로 많이 재배되고 있는 산채는 이중 절반 정도 밖에 되지 않는다. 비교적 많이 재배되고 있는 산채는 우선 시장 거래가 가능하고 농가의 포장에 심었을 때 잘 자라 주어야 하며 수확시 일정한 수량이 확보될 수 있는 품목들이다(1~3).

산채는 일반적으로 고유의 독특한 맛과 향기를 지니고 있으며 대부분이 약리적인 특수성분을 함유하고 있어 건강식품으로도 가치가 매우 높다. 산채의약리효능으로는 항돌연변이성, 항종양 및 암세포에대한 세포독성, 간기능 개선, 항비만, 항균효과 등이보고되고 있다. 식품학적으로는 섬유소가 많은 저열량식품으로 칼슘, 인, 철 등의 무기물과 각종 비타민이 비교적 많은 건강식품으로 가치가 높다. 근래 국민생활수준의 향상과 더불어 건강식품에 인식과 관심이 고조됨에 따라 산채의 수요가 차츰 늘어나는추세이며 소비패턴도 점차 다양화되고 있다(5~7).

산채의 수요증가 및 소비패턴의 변화에는 필연적으로 충분한 공급이 뒷받침되어야 하는데 자연산 채취로는 수요를 도저히 감당할 수 없을 뿐만 아니라 일정한 규격과 품질을 갖춘 상품을 연중 공급하기가 매우 어렵다. 따라서 다각적인 연구결과에 따라 인위적인 재배생산이 가능한 재배기술이 알려지면서 농가의 새로운 소득 작목으로 각광을 받고있다. 그러나 소비자들은 식재료의 생산과 유통에 대한 고질적인 불신문제와 시설하우스의 재배기술을 이용한 산채재배가 늘어나면서 순수한 의미의청정 이미지는 줄어들고 있다(8).

II. 본론

1. 산채재배동향과 유통(2~4)

(1) 산채재배동향

산채의 재배가 일부지역의 소규모에서 상업농 차

원의 전국 규모로 성장한 것은 80년대 중반 이후부터며 재배 역사가 비교적 짧다. 물론 더덕, 도라지, 삽주, 잔대 등 몇 가지종류는 오래전부터 재배되어왔지만 이는 식용 목적이라기보다는 약용 목적으로이루어진 것이다. 우리나라에서 통계가 잡히고 있는산채의 종류는 28종인데, 이중에서 10대 산채의 재배면적을 살펴보면, 전체적으로 보아 도라지가 단연많고 그 다음으로 더덕, 취나물, 고사리, 미나리, 달래, 고들빼기, 독활(땅두릅) 순이다.

농촌진흥청에서 조사한 바에 따르면 2010년 전국 재배면적은 11,094 ha로서 상위 5개 지역인 강원, 전남, 경남, 경북, 경기 등 재배면적이 8,461 ha로 전체면적의 76%를 점유하였다. 산채류의 상위 5개 작목은 더덕, 고사리, 취나물, 도라지, 나무두릅 등으로 재배면적이 7,811 ha로 전체면적의 70%를 점유하고 있다.

재배유형으로 비교하여 보면 노지재배의 면적 (9,671 ha)이 전체의 약 88%였으며 비가림재배와 시설재배는 각각 741 ha, 638 ha로 낮은 편이다. 작목별 재배유형으로 볼 때 노지재배에는 뿌리, 나무햇순, 잎줄기, 식물체 전초 등을 이용하는 대부분의 산채가 제철 생산되는 반면 비가림재배에는 달래, 취나물(참취, 곰취, 곤달비 등), 비름, 참나물, 고사리, 곤드레, 세발나물, 누룩치 등이 해당된다. 시설재배에는 취나물, 참나물, 삼엽채, 돌나물, 머위, 비름 등비교적 신선한 잎줄기를 이용하는 산채들이 노지재배보다 조기생산되거나 일부 품목의 경우 거의 연중생산되고 있다.

상위 5개 작목별 주요 산지를 보면 더덕은 강원, 제주, 경북, 고사리는 경남, 전북, 경북, 취나물은 전남, 강원, 경북, 도라지는 경남, 전남, 강원, 나무두릅은 강원, 경남, 전남, 달래는 충남, 강원, 경북 등에서 많이 재배되고 있는 것으로 나타났다.

(2) 산채의 유통

근래에 와서 산채의 상품출하방법은 2가지로 대별할 수 있다. 즉 신선상태의 수확된 생채 그대로 출하는 방법과 과잉생산으로 가격수준이 낮다든지 생

Food Science and inclustry

산자의 여러 사정으로 제시기에 출하하지 못한 경우 건조시켜 상품화한 후 출하하는 방법이다. 전자의 경우 유통경로는 생산자→수집상→도매상→소매상 →소비자이며 후자의 경우에는 생산자→가공업체 →소매상 또는 소비자(또는 가공업체를 생략하고 계 통출하나 직출하)가 일반적이다.

현재의 산채유통은 서울농수산물 도매시장을 중심으로 여러개의 유사도매시장에서 이루어지고 있는데 과거에 비하여 거래단위, 등급, 포장규격 등의 면에서 그 체계가 상당히 질서 있게 잡혀져 가고 있다.

한편 산채종류별 가격변화는 해에 따라 다소 기복이 있는데 다른 농산물과 마찬가지로 수요와 공급면에서 불균형이 생길 경우 비교적 고가로 형성되며 월별 가격변화로 볼 때 각 산채의 노지산(또는 자연산)의 출하시기를 피한 단경기에는 높은 수준의 가격이형성되는 것이 일반적이다.

(3) 식용 산채의 종류 및 이용부위

우리나라에는 3,200여 종의 식물이 자생하고 있으며 이중 식용할 수 있는 식물로는 약 850종이 알려지고 있다. 그러나 실제로 식생활에 이용되는 종류는 수십종(30종)에 지나지 않으며 대개 본래의 식물명으로 불리워지기 보다는 지역에 따라 독자적인 이름이 관용적으로 쓰이는 경우가 많다(예, 달래를 달롱, 달릉게 등, 고들빼기를 쓴나물, 냉이를 나생이, 독활을 땅두릅, 땃두릅 등, 화살나무를 홋잎나물 등).

산채는 식물학적인 생활형에 따라 크게 초본식물과 목본식물로 나눌 수 있다(표 1). 양쪽 다 연한 새 순이나 잎, 줄기 등의 식물체를 식용대상으로 한다는 면에서는 공통점이 있는데 초본식물의 경우에는 종류에 따라 땅속의 뿌리도 식용한다는 면에서 목본식물과 구분된다. 초본식물은 다시 1, 2년생 식물과다년생 식물로 분류할 수 있다. 전자에는 냉이, 고들빼기, 씀바귀 등이 대상이 되며 후자의 예로는 달래,산마늘 등과 같이 땅속에 구근을 형성하는 그룹과취나물, 돌나물, 고사리, 더덕, 도라지, 참나물, 원추리, 머위 등 숙근으로 생활하는 그룹을 들 수 있다.

산채의 이용형태는 생채와 건채로 대별되는데, 대

표 1. 주요 산채의 종류 및 이용형태(1)

구분	생활형	식물명	주 식용부위(이용형태)
	1, 2년생	고들빼기 냉이 씀바귀	식물체 전체(생) 식물체 전체(생) 식물체 전체(생)
초본	다년생 (숙근)	참취 공취 미역취 독활 공사리 고나리 머 머 의 돌 쑥	잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생,) 잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생, 건) 잎 및 잎자루(생) 잎 및 잎자루(생) 잎 및 잎자루(생)
	다년생 (구근)	합주 원추리 비비추 더덕 도라지 잔대 고려엉겅퀴 달래 산마늘	잎 및 잎자루(생, 건) 잎 및 잎자루(생) 잎 및 잎자루(생) 잎 및 잎자루(생) 잎 및 잎자루(생) 잎 및 잎자루(생) 잎 및 잎자루(생) 인 및 잎자루(생, 건) 식물체 전체 (생) 식물체 전체 (생)
목본	낙엽성	다래나무 두릅나무 화살나무 초피나무	새 순 (생) 새 순 (생) 새 순 (생) 새순 및 열매 (생, 건)

출처: 산채증식기술, 국립산림과학원 (2015)

체로 신선한 순이나 잎, 줄기 등의 식물체를 수확 즉시 식품으로 이용하는 생채(生菜)와 거의 완전히 건조시킨 후 저장하여 두었다가 필요할 때마다 식품으로 이용하는 건채(乾菜)로 나누기도 한다. 생채의 종류로는 달래, 두릅, 냉이, 고들빼기 등을 들 수 있으며 건채는 이른바 묵나물로서 이용되는 고사리, 취나물 등이 대표적이다(표 1).

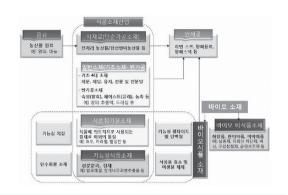


그림 1. 식품소재산업(9)

2. 산채류의 가공소재화

한국인들은 건조산채류의 특유한 향미와 질감을 이용한 조리법을 다양하게 이용하여 왔고, 건강식품에 대한 인식과 관심이 고조되면서 한국, 일본 등지에서 산채로 이용이 현저하게 증가되고 있다. 특히소비자의 급격한 식생활의 변화는 가공식품의 다양화 고급화에 대한 기술수요가 증가하면서 채소와 과일을 이용한 건조농산물에 대한 관심이 높아지고 있는 실정이다.

산채류는 한식의 중요한 식재료로 식이섬유소와 비타민 무기질 등 미량 영양성분과 플라보노이드, 폴리페놀과 같은 천연기능성 성분이 다량 함유되어 있는 반면에 지방함량이 낮아 현대인의 건강식에 대한 수요에 적합한 식재료로 수요가 증가하는 중이다.

그러나 산채류는 가공수준이 낮은 기초적인 가공 제품이 차지하는 비중이 높고 제조공정의 자동화비율이 낮은 품목으로 현재까지 새로운 기술은 영세가공업체가 대부분 직접 개발하는 것으로 조사되어유통되고 있는 산채의 대부분은 각각 원형 또는 단순제품으로 출하됨으로써 물량과 가격변동 여하에따라 농가소득의 안정적인 보장이 어려운게 현실이다. 따라서 부가가치제고에는 한계가 있어서 체계적인 가공기술개발이 절실히 필요한 품목이기도 하다(그림 1, 2).

산채류 종류별 가공품 종류를 보면 주로 성수기에는 생물상태로, 비성수기에는 건조상태의 1차 가공품(단

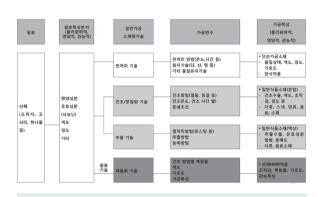


그림 2. 산채류의 일반식품소재화를 위한 기초과정

순가공소재)이 대부분이며 일부 차, 술, 음료 건강보조 식품으로도 가공되고 있다. 산채는 신선한 상태에서는 수분함량이 높아 보존성이 낮고 조직도 쉽게 변질되며, 중량에 비해 체적이 크기 때문에 저장 및 유통에 제한 적이다. 동시에 생산 시기가 매우 한정되어 있는 경우 가 대부분이다. 따라서 산채가 다량으로 생산되는 시기 에 건조시켜 상품가치를 향상시킴으로써 농산물의 가 격 및 유통체계를 안정화 시키는 데 기여하고 있으나 가격측면에서 높은 단가로 생산성은 낮다.

(1) 단순가공소재

산채는 생산량이 많은 성수기에는 일반채소와 같이 음식재료로 활용되지만 성수기가 길지 않아 염장 또는 당장, 건조 등을 통해 사계절 사용이 용이하도록 저장하면서 연중 사용하여 왔다. 염장산채는 주로 장아치로 밥상의 부식원료로 활용되어 왔으며 당장산채는 당액을 그대로 조미원료로 또는 물로 희석하여 음료로 사용하고 건더기는 부식으로 활용된다. 염장산채와 당장산채는 기본적인 풍미가 염미와 단맛이 강하고 조직감이 삼투압으로 질겨져 있어 가공소재로의 활용도 증진은 현대인의 식생활 변화에 맞추어 다각적인 검토가 필요하다.

건조산채는 수침으로 복원시켜 주로 한국인 밥상의 주요부식(나물)으로 활용되어 왔다. 산채류에 함유된 성분은 수용성·지용성인지와 식품에서의 결합 형태, 식품내의 성분의 농도 등으로 인해 데침과건조방법에 따른 영향을 다르게 미치는 것을 알려져

표 2. 건조에 따른 산채가식부 100g 당 영양성분 함량 변화*

	,				T		ulcini			
	일반성분			무기 			비타민			
산채	단백질	지질	탄수화물	칼슘	철	A (베타카로틴)	B1	B2	С	
	(g)	(g)	(g)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)	
참취(생채)	3.3	0.4	7.1	12.4	2.3	3.564	0.04	0.10	14	
참취(건조)	22.2	2.3	53.6	231	8.8	197	0.03	0.08	6	
고사리(생것)	2.5	0.1	5.1	8	2.5	243	0.01	0.14	18	
고사리(건조)	25.8	0.6	54.2	188	6.4	32	0.11	0.51	0	
도라지(생것)	1.7	0.4	21.4	39	2.2	0	0.08	0.13	12	
도라지(건조)	2.4	0.1	71.8	232	6.2	0	0.10	0.36	0	

^{*} 농촌진흥청, 식품성분표 발췌

있다. 대부분의 산채는 건조과정에 의해 flavonoid, polyphenol 화합물과 같은 생리활성물질이 상당량 남아있으며 대부분이 건조과정에 의해 오히려 그 함량이 증가한다. 또한 제철에 독성이 강한 나물(예)고사리)은 건조해 수침, 복원과정을 통해 독성을 낮추거나 소멸해서 연중 식재료로 활용할 수 있게 된다.

산채는 건조과정을 통해 수분이 증발하고 기타 다른 영양성분이 함량이 농축되어 증가하는데 기능성 성분을 제외한 일반성분으로는 단백질과 탄수화물특히 섬유소 함량이 크게 증가된다(표 2). 산채는 생원료 상태에서도 섬유소 함량이 높은 식품류에 포함되는데 건조과정을 통해서 섬유소 함량이 크게 증가하게 된다. 따라서 식품원료로 건조상태 산채를 그대로 활용하기 어렵기 때문에 복원과정을 통해 식재료로 활용하거나 다른 식재료와 혼합하기 쉬운 형태(분말, 액상(페이스트) 등)로 변형시켜 가공식품 원료로 사용할 수 있다.

건조산채는 물로 복원되어 단순가공형태로 한식의 주요 식재료 연중 활용되는데 산채종류에 따라복원방법에 번거롭고 많은 노동력이 요구되기 때문에 현대의 일반 소비자가 사용을 꺼리는 식재료이기도 하다. 따라서 재수화 시간을 단축하고 핵가족이일회 섭취할 수 있도록 양을 결정하여 건조를 이용한 간편 즉석 산채와 즉석 조리 산채의 제품화 기술이 필요하다. 일반적으로 산채류 원료는 재배조건,품종,계절,기후등에 따라 성분의 많은 차이가 있으며, 수침 또는 데치는 과정 중에 소금을 1~2% 첨가

하면 생리활성 성분이 더 보유될 수 있는 것으로 조 사되었으며, 데침액에 소금의 첨가는 산채잎의 색에 관여하는 것보다 데칠 때 우러나오는 성분에 더 영 향을 미치는 것으로 조사되었다(10). 산채류 중 일부 는 특이한 향과 맛이 가공소재화를 위해서는 저감 화 또는 제거가 필요하다. 예를 들어 도라지의 쓴맛 은 건강기능성에 장점이 되지만 가공식품의 기호도 를 저하시키는 특징이 되기도 한다. 도라지의 단순 식품소재 및 일반식품소재로 활용키 위해서 쓴맛제 거공정이 다각적으로 검토되어 왔으며 일반적으로 수침, 소금물세척 또는 동결방법으로 쓴맛을 제거할 수 있다(표 3)(11).

(2) 일반가공소재

식품원료로 산채의 활용도를 높이는 가가 보편적 인 방법으로는 산채를 식품의 일반소재화 하는 방법 이다. 가장 간단한 방법은 가공식품소재로 많이 활 용되는 밀가루(30.77±0.14

(mm)와 같은 입자로 분쇄화하여 이들 원료와 혼용하여 소비자 인지도가 높은 가공식품으로 제조하는 방법이다. 혼용 원료와 입자가 비슷하면 기호도상에 혼용효과가 크다.

산채를 미분화함으로써 기대할 수 있는 효과로는 식감(혀의 촉감)의 개선, 소화·흡수의 개선, 풍미와 색채의 유지 등을 들 수 있다. 일반적으로 미세한 분 말일수록 혀의 촉감은 미끌한 경향이 있으나, 분쇄 입도는 생산성에 지대한 영향을 미치므로 품질상 요

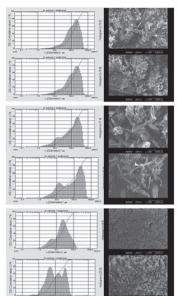
	Number of	Control -			erature			STATE OF THE STATE OF	1	A STATE OF THE STA	30000	SP 18 55 10
	process	Control -	-5°C	-10°C	-20°C	-70℃ 1.8±0.5		10000 C	- total	FERNING A		\$ 1535.WW
	Once		4.8±0.5	3.3±1.0	3.5±1.3	1.8±0.5	Once				X 100000	
Appearance ¹⁾	Twice	5.5±1.7	5.5±1.2	2.0 ± 0.4	1.8±0.2	1.2±0.2	Once	6 4Z 187 8	SOLID SERVICE	24 B 60 A 10		Sec. 31.20
	Thrice		4.7±1.0	1.2±0.5	1.0±0.5	1.0±0.3				CONTRACT PARTY	23300	THE STATE
2000	Once		4.0±0.0	3.5±1.0	3.3±1.3	3.8±1.0		men 200 1/4 700-4	2000 DE: 1707 DESS	8800 20VF -1 TH 288-W	2000 20vs -150 200-m	0000 Davy +150 200-a
Flavor1)	Twice	4.3±1.0	4.0±1.1	3.2±1.1	3.2±1.1	3.2±1.1		Control	-5°C	-10°C	-20°C	-70°C
	Thrice		4.0±0.8	3.0±0.6	2.8±0.8	2.7±0.9			Children Co.		The second second	
	Once		3.7±1.1	4.6±2.3	4.4±2.1	4.0±1.6				1 X X X X X X X X X X X X X X X X X X X	P. C. C. S. S. C.	
Bitter taste ²⁾	Twice	wice 5.0±2.2	2.0±0.8	3.0±1.6	3.3±1.3	4.3±2.1	Twice	92306 5.023 C		307 287 107		
	Thrice		2.0±1.0	2.6±1.1	2.9±1.1	3.6±1.1			ACCEPTANCE TO	量的原始的		
	Once Twice	5 - 6 20 1	5.2±0.5	5.4±0.2	5.2±0.2	5.1±0.5		W. 109 19 19 19 19	YER DYDYSSE		1 1 1 MI	
Texture ¹⁾	Twice	5.5±0.4	5.2±1.3	2.2±0.8	1.8±0.4	1.4±0.5		Control	-570	-10°C	-20°C	-70°C
	Thrice		5.1±1.1	2.0±0.9	1.6±0.5	1.2±0.4		Control	THE REAL PROPERTY AND PARTY.	THE ALLEY APPLICATION	PROMETER AND	-700
	Once		5.8±0.4	5.8±0.4	4.4±0.9	3.0±1.0				A STATE OF THE STA	2 - 11 - 15 of the	
Chewiness ¹⁾	Twice	6.5±0.6	6.5±0.6	5.3±1.3	4.3±1.5	3.8±1.0	Thrice	200000000000000000000000000000000000000		A STORY OF THE STORY		
	Thrice		5.9±1.1	5.0±0.9	4.0±0.8	3.0 ± 1.1	milice	55055 3560			The same of the	是1980人会66条件
Overall	Once		5.0±0.8	2.8±1.0	3.8±0.5	2.5±1.7		67-523995	300000000000000000000000000000000000000			1000
preference ¹⁾	Twice	5.4±0.5	5.8±0.8	2.4±0.5	2.8±0.4	2.4±0.9		West Constitution	TO KNOW	Contract of the same	THE COURT WATER	A DESCRIPTION OF THE PERSON OF

표 3. 도라지 동결온도 및 탈수처리 횟수에 따른 쓴맛에 대한 기호도와 외관변화(12)

출처: 도라지 쓴맛 개선을 위한 공정개발 연구(한국식품영양과학회지, 44(10), 2015)

구되는 입도를 파악하는 일이 중요하다. 인간의 혀로 인식할 수 있는 입도는 약 20 /m까지라고 일컬어지나(12) 첨가하는 식품의 종류, 상태 및 사람의 기호에 따라 선호하는 입자는 다르다. 예로써 녹차는 건강 기능성이 주목받게 되어 먹는 차를 비롯하여 과자(녹차쿠키), 유제품(녹차우유), 면류(녹차칼국수)등 음료 외에도 녹차분말을 이용한 다양한 상품이개발되고 있다. 녹차분말을 식품에 첨가하여 이용할 경우, 분채의 크기이외에도 녹차의 색채가 기호나 식욕 등의 감각을 좌우하는 중요한 요소가 되는데 녹차분말의 입도가 미세해짐에 따라 명도와 녹색의 선명도가 더욱 향상됨이 검정되었다(13).

도라지, 더덕 등 식물섬유를 다량 포함한 산채류의 분쇄는 한가지 분쇄방법으로는 가공소재로 적합한 입도를 얻을 수 없으며 건조방법, 분쇄방법과 분쇄정도에 따라 분말의 색도차이도 다르게 나타난다(표 4, 5). 따라서 산채류의 중간분쇄 내지 미분쇄에는 한가지 분쇄기술이외에 전단력과 충격력의 복합작용을 부여하는 고속회전식 충격분쇄기가 적합한것으로 알려져 있다(14).


분쇄기내 분체에 작용하는 힘(분쇄력)은 압축, 충격, 마쇄, 전단 등이 있는데 원료의 종류에 따라 효과적인 분쇄작용이 존재한다. 분쇄는 단순히 입도를 미세하게 할 뿐만 아니라 맛, 향기, 혀의 촉감, 색등의 관능적인 점에 대한 배려도 필요하다. 산채의 높은 식이섬유의 함량이 분쇄중에 많은 분쇄열을 발생시키는데, 산채내에는 열에 약한 성분들이 분쇄시에 발생하는 열로 인하여 변질을 일으켜 품질이 나빠질

수 있다. 따라서 건조 산채의 분쇄에는 분쇄열을 신속히 제거할 필요가 있다. 특히 열에 민감한 성분과 유분, 수분에 의한 부착이 심한 산채의 경우, 냉각매 체로 액체질소(LN2, 비점 -196℃)를 이용하는 동결 분쇄가 적합하다(15). 또 액체질소까지의 저온이 필요하지 않을 경우에는, 저온의 냉각공기를 불어넣으면서 분쇄하는 저온분쇄나 냉동장치로 분쇄기 본체와 분위기를 냉각하는 냉동분쇄를 이용할 수 있다. 냉동장치를 사용하는 냉동분쇄는 액체질소를 냉매로 한 동결분쇄와 비교하여 경상비를 30~50% 삭감할 수 있고, 식품소재의 제조에 적합한 저비용 분쇄법으로서 유망하다.

가공식품의 품질은 분체소재의 특성뿐만 아니라 식품가공법에도 큰 영향을 받으므로 식품 가공 프로 세스를 고려한 분쇄처리가 중요하다. 특히 산채류의 식품소재로의 응용분야가 확대되기 위해서는 더욱 제조비용이 낮은 초미분쇄기술의 개발이 필요하다. 일반적으로 식품의 분쇄는 주로 전분함량이 높은 곡 류를 대상으로 개발되어 왔기 때문에 전분함량이 낮 은 산채류(식물섬유를 다량 함유한 소재(인삼, 도라 지, 더덕, 오가피 등)는 단단하고 부서지기 쉬운 물 질과 비교하여 분쇄력이 가해지기 어려워 공업 규모 에서의 미분말 제조가 곤란하며 비용적인 문제로 용 도가 제한되어 있다. 산채의 소재화 공정에서의 중 요한 핵심기술은 분쇄이고, 저비용에서의 미분말 제 조기술 개발이 필요하다(16).

표 4. 건조도라지, 고사리의 건조방법별 분말입도와 형태

		Diameter at 10.00 % (µm)	Diameter at 50.00 % (μm)	Diameter at 90.00 % (µm)	Mean Diameter (μm)
7171	동결 건조	29.99±0.31	136.32±1.14	342.87±2.98	163.79±1.18
도라지	열풍 건조	21.51±0.23	138.07±2.12	360.33±3.48	167.42±1.98
	동결 건조	12.51±0.71	119.95±2.44	355.11±2.12	154.36±1.56
고사리	열풍 건조	9.80±0.41	104.21±6.84	352.57±5.78	145.90±4.55
밀기	가루	4.47±0.01	23.00±0.05	69.06±0.40	30.77±0.14
쌀기	가루	2.44±0.02	10.19±0.38	46.12±0.91	17.89±0.16

출처 : 농림축산 자원의 가치향상을 위한 고부가 식품의 가공적성 연구, 김영붕 등, IPET 2차연도 결과보고서 (2015)

표 5. 건조도라지의 분쇄방법별 입도와 색도변화(17)

		Partic	le size	Hunter color value				
	Diameter at 10.00 % (µm)	Diameter at 50.00 % (µm)	Diameter at 90.00 % (µm)	Mean Diameter (µm)	L	а	b	
Pin mill	21.51±0.23	138.07±2.12	360.33±3.48	167.42±1.98	81.66±0.56	1.87±0.23	16.28±0.19	
Ball mill	10.60±0.05	58.63±0.49	191.63±0.37	83.86±0.30	91.31±0.84	0.99±0.11	11.77±0.17	
Cyclotec sample mill	11.45±0.09	54.19±0.86	172.38±5.54	77.62±1.68	91.00±0.03	0.58±0.04	12.42±0.02	
Jet mill	5.33±0.00	13.07±0.03	25.91±0.18	14.63±0.06	92.97±0.15	0.49±0.02	9.71±0.05	
Pin mill		Ball mill	Cyc	lotec sample	mill	Jet mill		
N (Currents) / m	0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	x (Damester) / m	0000 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	in solumn f undersity x (Diameter) f year	Heargan (17.0)	in volume I und		
				0				

출처 : 농림축산 자원의 가치향상을 위한 고부가 식품의 가공적성 연구, 김영붕 등, IPET 2차연도 결과보고서 (2015)

Ⅲ, 결론

산채류의 재배농가나 재배면적은 증가하고 있으나 아직 소규모 재배농가가 많은 실정이다. 재배하고 있는 산채류는 면적 기준으로 살펴보면, 도라지가 단연 많고 그 다음으로 더덕, 취나물, 고사리, 미나리, 달래, 고들빼기, 독활(땅두룹) 순이다. 이러한 산채류 재배도 일반 채소류 재배에 준하여 하고 있어 산채 특유의 향과 맛을 유지시켜 품질을 향상시키는 노력은 못하고 있다. 특히 일부 산채를 제외한 대부분의 산채는 야생수집중에 의존하고 지역에 따라 맛, 품질 및 안전성 차이가 크므로 균일한 품질의 재배종 육종과 이의 농가 보급이 시급한 실정이다. 동시에 산채의 대부분은 계절성이 강해 한 시기에만 생산되므로 연중 공급될 수 있는 병해충에 강한 사계절성 품종개발과 기타 이와 관련 품종개량을 통한 재배적응성, 균일성 등을 제고가 요구된다(18).

산채류의 가공상품도 보관성을 좋게하기 위한 건조 나물, 묵나물과 장아찌 위주여서 앞으로는 부가가치가 높은 상품개발이 필요하다. 산채류에 대한소비자의 친근성을 높이는데 있어 가장 접근하기 쉬운 방법은 분쇄를 이용한 식품소재화로 생각된다. 미분말 형태의 산채류는 활용도가 높은 다른 식품원료와 혼합하여 해당 제품을 다른 제품과 차별화, 고급화 할 수 있는 방법으로 활용되면서 소비자의 식생활에 쉽게 침투 할 수 있기 때문이다.

이외에 한시적으로 다량생산에 대비하여 품질향상 등 부가가치 제고를 위한 저장기술개발, 활용도 증진을 위한 다양한 가공기술개발과 산채 생산 소비촉진을 위한 기능성 성분분석 및 홍보 등이 필요하다. 이를 통해 일반 소비자들이 건강에 좋은 산채를 일반채소처럼 소비하고 산채가 일반채소처럼 생산되는 시기를 앞당길 수 있다.

참고문헌

 Kim MC, Kim DH, Han JK. Germination technologies of edible wild herbs. Korea Forest Research Institute Report 586 (2014)

- Kim WB. Situation of wild edible plants production in Korea.
 The plant resources society of Korea procedings 3 (2013)
- Ahn SY, Kim JH, Kim YJ, Kwan SB. Study on the technology of edible plant production. Ganwondo agricultural research report (2012)
- Ahn SY, Kim JH, Kim YJ. Current status and prospect of cultivation of wild vegetable crops. Korean J. Horti. Sci. Technol. 27: 36–37 (2009)
- Kim SH, Choi HJ, Chung MJ, Cui CB, Ham SS. Antimutagenic and antitumor effects of *Codonopsis lanceolata extracts*.
 J. Korean Soc. Food Sci. Nutr. 38: 1295–1301 (2009)
- Lee YC. Effect of *Platycodon grandiflorum* on the improvement of liver function. International University of Korea Thesis (2012)
- Ahn H, Chung L, Choe E. In vitro antioxidant activity and α-glucosidase and pancreatic lipase inhibitory activities of several Korean sanchae. J. Korean Soc. Food Sci. Technol. 47: 164–169 (2015)
- Kwon Y, Cha K, Lee J, Lee J, Lee I, Kim Y, Jeon D. Risk assessment on pesticide residues and heavy metals of dried agriculture products in Busan. Annual Reprt of Busan Metropolitan city Institute of Health & Environ 24: 70-79 (2014)
- 9. Kim SU, Cheon CK, Kim YJ, Byun SY. Policy implementation of development for food materials rhalf-processing industries. Korea Rural Economic Institute report (2014)
- Choi NS. The study on change of quality properties and biological activities of Korean wild vegetables by cultivation, blanching and drying method. Ewha womans university thesis (2000)
- Chang YJ, Kim E, Choi YS, Jeon KH, Kim YB. Development process for decreasing bitterness of Doraji(*Platycodon grandi-florum*) J Korean Soc Food Sci Nutr 44: 1550–1557 (2015)
- 12. M. Loncin Food Engineering, Academic Press. 255 (1979)
- 13. ソ\フト技研出版部,超微粉碎プロセス技術,向文堂. 77 (1985)
- 14. 岡本浩, 軟質·纖維質天然材料の粉碎事例, 粉體と工業. 28: 53-59 (1996)
- 15. 横山藤平, 低温粉碎における經濟的考察, 第4回破碎·粉碎の新技 術に關するシンポジウムテキスト. 2: 108-119 (1980)
- Shu TS, Lee G, Seo YK, Lee KP, Kim DJ. Micro particle technology in food science J Food Sci Industry 37: 17–21 (2004)
- Kim YB. Study on processing aptitude of high value-added foods for value improvement of agriculture, forest and animal resources. IPET report (2015)
- Hwang EG, Kim SJ, Kim BK. Effects of the characteristics of wild vegetables on customer satisfaction, trust and repurchase intention. Korean J Culinary Res 20: 59-74 (2014)