DOI QR코드

DOI QR Code

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu (Department of Oral and Maxillofacial Surgery, Nara Medical University) ;
  • Yamamoto, Kazuhiko (Department of Oral and Maxillofacial Surgery, Nara Medical University) ;
  • Horita, Satoshi (Department of Oral and Maxillofacial Surgery, Nara Medical University) ;
  • Murakami, Kazuhiro (Department of Oral and Maxillofacial Surgery, Nara Medical University) ;
  • Tsutsumi, Sadami (Applied Electronics Laboratory, Kanazawa Institute of Technology) ;
  • Kirita, Tadaaki (Department of Oral and Maxillofacial Surgery, Nara Medical University)
  • Received : 2016.04.30
  • Accepted : 2016.06.09
  • Published : 2016.06.30

Abstract

Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

Keywords

References

  1. Misch CE, Wang HL, Misch CM, Sharawy M, Lemons J, Judy KW. Rationale for the application of immediate load in implant dentistry: Part I. Implant Dent 2004;13:207-17. https://doi.org/10.1097/01.id.0000140461.25451.31
  2. Laviv A, Levin L, Usiel Y, Schwartz-Arad D. Survival of immediately provisionalized dental implants: a case-control study with up to 5 years follow-up. Clin Implant Dent Relat Res 2010;12 Suppl 1:e23-7.
  3. Pessoa RS, Coelho PG, Muraru L, Marcantonio E Jr, Vaz LG, Vander Sloten J, et al. Influence of implant design on the biomechanical environment of immediately placed implants: computed tomography-based nonlinear three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2011;26:1279-87.
  4. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 2000;15:15-46.
  5. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001;12:207-18. https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  6. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res 1986;(208):108-13.
  7. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 2010;21:213-20. https://doi.org/10.1111/j.1600-0501.2009.01823.x
  8. Bayarchimeg D, Namgoong H, Kim BK, Kim MD, Kim S, Kim TI, et al. Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test. J Periodontal Implant Sci 2013;43:30-6. https://doi.org/10.5051/jpis.2013.43.1.30
  9. Ikumi N, Tsutsumi S. Assessment of correlation between computerized tomography values of the bone and cutting torque values at implant placement: a clinical study. Int J Oral Maxillofac Implants 2005;20:253-60.
  10. Roze J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res 2009;20:1140-5. https://doi.org/10.1111/j.1600-0501.2009.01745.x
  11. Hsu JT, Fuh LJ, Tu MG, Li YF, Chen KT, Huang HL. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models. Clin Implant Dent Relat Res 2013;15:251-61. https://doi.org/10.1111/j.1708-8208.2011.00349.x
  12. Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospective, biomechanical, and imaging study. Bone 2005;37:776-80. https://doi.org/10.1016/j.bone.2005.06.019
  13. Bardyn T, Gedet P, Hallermann W, Buchler P. Quantifying the influence of bone density and thickness on resonance frequency analysis: an in vitro study of biomechanical test materials. Int J Oral Maxillofac Implants 2009;24:1006-14.
  14. Nkenke E, Hahn M, Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 2003;14:601-9. https://doi.org/10.1034/j.1600-0501.2003.00937.x
  15. Marquezan M, Lima I, Lopes RT, Sant'Anna EF, de Souza MM. Is trabecular bone related to primary stability of miniscrews? Angle Orthod 2014;84:500-7. https://doi.org/10.2319/052513-39.1
  16. Palma-Carrio C, Maestre-Ferrin L, Penarrocha-Oltra D, Penarrocha-Diago MA, Penarrocha-Diago M. Risk factors associated with early failure of dental implants. A literature review. Med Oral Patol Oral Cir Bucal 2011;16:e514-7.
  17. Petrie CS, Williams JL. Probabilistic analysis of peri-implant strain predictions as influenced by uncertainties in bone properties and occlusal forces. Clin Oral Implants Res 2007;18:611-9. https://doi.org/10.1111/j.1600-0501.2007.01384.x
  18. Guan H, van Staden R, Loo YC, Johnson N, Ivanovski S, Meredith N. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. Int J Oral Maxillofac Implants 2009;24:866-76.
  19. Sugiura T, Yamamoto K, Kawakami M, Horita S, Murakami K, Kirita T. Influence of bone parameters on peri-implant bone strain distribution in the posterior mandible. Med Oral Patol Oral Cir Bucal 2015;20:e66-73.
  20. Morton D, Jaffin R, Weber HP. Immediate restoration and loading of dental implants: clinical considerations and protocols. Int J Oral Maxillofac Implants 2004;19 Suppl:103-8.
  21. Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago (IL): Quintessence; 1985. p.199-209.
  22. Kurniawan D, Nor FM, Lee HY, Lim JY. Finite element analysis of bone-implant biomechanics: refinement through featuring various osseointegration conditions. Int J Oral Maxillofac Surg 2012;41:1090-6. https://doi.org/10.1016/j.ijom.2011.12.026
  23. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech 1998;31:125-33.
  24. Ding X, Liao SH, Zhu XH, Zhang XH, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res 2009;11:279-87. https://doi.org/10.1111/j.1708-8208.2008.00124.x
  25. Mericske-Stern R, Assal P, Mericske E, Burgin W. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants 1995;10:345-53.
  26. Hudieb M, Wakabayashi N, Suzuki T, Kasugai S. Morphologic classification and stress analysis of the mandibular bone in the premolar region for implant placement. Int J Oral Maxillofac Implants 2010;25:482-90.
  27. Gonda T, Yasuda D, Ikebe K, Maeda Y. Biomechanical factors associated with mandibular cantilevers: analysis with three-dimensional finite element models. Int J Oral Maxillofac Implants 2014;29:e275-82. https://doi.org/10.11607/jomi.3663
  28. Vandamme K, Naert I, Geris L, Vander Sloten J, Puers R, Duyck J. The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit. Eur J Oral Sci 2007;115:21-9. https://doi.org/10.1111/j.1600-0722.2007.00416.x
  29. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 2009;20:467-71. https://doi.org/10.1111/j.1600-0501.2008.01679.x
  30. Cha JY, Kil JK, Yoon TM, Hwang CJ. Miniscrew stability evaluated with computerized tomography scanning. Am J Orthod Dentofacial Orthop 2010;137:73-9. https://doi.org/10.1016/j.ajodo.2008.03.024
  31. Shen WL, Chen CS, Hsu ML. Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2010;25:901-10.
  32. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem. Anat Rec 1990;226:414-22. https://doi.org/10.1002/ar.1092260403
  33. Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 1996;29:69-79. https://doi.org/10.1016/0021-9290(94)00156-1
  34. Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 2004;15:239-48. https://doi.org/10.1111/j.1600-0501.2004.01000.x
  35. Huang HL, Fuh LJ, Hsu JT, Tu MG, Shen YW, Wu CL. Effects of implant surface roughness and stiffness of grafted bone on an immediately loaded maxillary implant: a 3D numerical analysis. J Oral Rehabil 2008;35:283-90. https://doi.org/10.1111/j.1365-2842.2007.01817.x
  36. Ferreira MB, Barao VA, Delben JA, Faverani LP, Hipolito AC, Assuncao WG. Non-linear 3D finite element analysis of full-arch implant-supported fixed dentures. Mater Sci Eng C 2014;38:306-14. https://doi.org/10.1016/j.msec.2014.02.021
  37. Duaibis R, Kusnoto B, Natarajan R, Zhao L, Evans C. Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study. Angle Orthod 2012;82:875-80. https://doi.org/10.2319/111011-696.1
  38. Chiapasco M. Early and immediate restoration and loading of implants in completely edentulous patients. Int J Oral Maxillofac Implants 2004;19 Suppl:76-91.
  39. Seker E, Ulusoy M, Ozan O, Dogan DO, Seker BK. Biomechanical effects of different fixed partial denture designs planned on bicortically anchored short, graft-supported long, or 45-degree-inclined long implants in the posterior maxilla: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2014;29:e1-9. https://doi.org/10.11607/jomi.3264
  40. Chang PK, Chen YC, Huang CC, Lu WH, Chen YC, Tsai HH. Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study. Int J Oral Maxillofac Implants 2012;27:e96-101.

Cited by

  1. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis vol.47, pp.4, 2016, https://doi.org/10.5051/jpis.2017.47.4.251
  2. 상악 전치부 즉시하중 임플란트의 식립 깊이에 따른 삼차원 유한요소 분석 vol.56, pp.2, 2016, https://doi.org/10.4047/jkap.2018.56.2.105
  3. A Prosthodontic Treatment Plan for a Saxophone Player: A Conceptual Approach vol.6, pp.3, 2018, https://doi.org/10.3390/dj6030033
  4. Does the implant-abutment interface interfere on marginal bone loss? A systematic review and meta-analysis vol.33, pp.suppl1, 2016, https://doi.org/10.1590/1807-3107bor-2019.vol33.0068
  5. Evaluation of Primary Stability of Cylindrical and Tapered Implants in Different Bone Types by Measuring Implant Displacement: An In vitro Study vol.10, pp.3, 2016, https://doi.org/10.4103/ccd.ccd_788_18
  6. Effect of Direct and Indirect Materials on Stress Distribution in Class II MOD Restorations: A 3D-Finite Element Analysis Study vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/7435054
  7. The effect of diameter, length and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: A 3D finite element analysis vol.30, pp.5, 2016, https://doi.org/10.3233/bme-191073
  8. Ultrastructural Characterization of the Titanium Surface Degree IV in Dental Implant Aluminum Free (Acid Attack) vol.11, pp.3, 2020, https://doi.org/10.4236/jbnb.2020.113009
  9. Finite Element Analysis of the Stress Field in Peri-Implant Bone: A Parametric Study of Influencing Parameters and Their Interactions for Multi-Objective Optimization vol.10, pp.17, 2016, https://doi.org/10.3390/app10175973
  10. Biomechanical Properties of Bone and Mucosa for Design and Application of Dental Implants vol.14, pp.11, 2016, https://doi.org/10.3390/ma14112845
  11. An experimental study on the effects of the cortical thickness and bone density on initial mechanical anchorage of different Straumann® implant designs vol.7, pp.1, 2016, https://doi.org/10.1186/s40729-021-00367-2