DOI QR코드

DOI QR Code

Antioxidant Effect of Chungkukjang Supplementation against Memory Impairment induced by Scopolamine in Mice

Scopolamine으로 유도된 기억 손상 마우스에서 청국장 식이의 항산화 효과

  • Kong, Hyun-Joo (Faculty of Cousine and Nutrition, Daegu Hanny University) ;
  • Lee, Kyung-Eun (School of Nursing, Yeungnam University College) ;
  • Yang, Kyung-Mi (Faculty of Cousine and Nutrition, Daegu Hanny University)
  • 공현주 (대구한의대학교 한방식품조리영양학부) ;
  • 이경은 (영남이공대학교 간호학과) ;
  • 양경미 (대구한의대학교 한방식품조리영양학부)
  • Received : 2016.03.07
  • Accepted : 2016.05.24
  • Published : 2016.06.30

Abstract

In this study, the antioxidant effect of Chungkukjang supplementation against memory impairment and oxidative stress in scopolamine (2 mg/kg i.p)-injected mice was investigated. The experimental animals were divided into five groups and fed experimental diets for 12 weeks; normal diet group (C), scopolamine + normal diet group (S), scopolamine + 63.0% soybean Chungkukjang supplementation group (SS), scopolamine + 45.0% Yakkong Chungkukjang supplementation group (SY), and scopolamine + 50.0% black foods such as black rice, black sesame seeds, and sea tangle added Yakkong Chungkukjang group (SYB). For the results of food intake, body weight gain, and brain weights, levels of scopolamine-injected groups were lower than the levels of the control group. The reduced brain weight of the scopolamine-injected group (S) was regulated to control level by supplementation of three types Chungkukjang. In the oxidative stress indicator, nitric oxide and malondialdehyde levels in serum of scopolamine-injected mice were higher than those of other groups. However, supplementation of soybeans, Yakkong and black foods added Yakkong Chungkukjang was proven to regulate them. Antioxidant enzyme activities such as superoxide dismutase (SOD) and glutathione-S-transferase (GST) in serum showed no significant differences among the groups. The reduced levels of vitamin A and vitamin E in serum and brain tissue of scopolamine-injected mice were controlled by supplementation of three types of Chungkukjang. Total antioxidant capacity (TAC) of scopolamine-injected group was lower than those of other groups. However, TAC was significantly elevated by Chunggukjang supplementation. Therefore, antioxidative effects of soybeans, Yakkong, and black foods added Yakkong Chungkukjang supplementations against oxidative stress in scopolamine-injected in mice could expected.

본 연구에서는 기억 손상을 유발하는 scopolamine을 투여한 마우스의 산화적 스트레스에 대하여 12주간 공급시킨 대두 청국장 분말, 약콩 청국장 분말 및 흑미, 흑임자, 다시마를 첨가한 약콩 청국장 분말 식이의 영향을 규명하고자 하였다. 그 결과, scopolamine을 투여한 마우스의 뇌 중량은 감소되었으나 세 종류의 청국장 분말의 섭취로 유의하게 호전시킬 수 있었다. Scopolamine의 투여로 인한 산화적 스트레스로 인해 혈청에서 증가된 NO와 MDA 함량은 세 종류의 청국장 분말의 섭취로 감소되었으며, 이러한 결과는 대두, 약콩 및 블랙푸드가 함유된 약콩 청국장 식이는 항산화 작용을 할 것으로 기대된다. 항산화 효소로 혈청에서의 SOD와 GST 활성은 모든 실험군 간에 유의적인 차이는 없었다. 뇌 조직의 SOD 활성은 정상군에 비해 scopolamine을 투여한 모든 실험군에서 p<0.05 수준에서 유의적으로 낮은 활성을 보였으나, GST 활성은 증가되었다. 증가된 GST 활성은 대두, 약콩 및 블랙푸드가 함유된 약콩 청국장 식이 섭취로 조절되었으나, 정상군의 활성 수준에는 미치지 못하였다. Scopolamine의 투여로 낮아진 혈청의 retinol 함량은 약콩 및 블랙푸드가 함유된 약콩 청국장이, 그리고 뇌 조직에서는 대두 및 약콩 청국장 섭취로 높일 수 있었다. 또한 scopolamine의 투여로 낮아진 혈청의 ${\alpha}-tocopherol$${\alpha}-tocopherol$ acetate 함량은 블랙푸드가 함유된 약콩 청국장 섭취로 증가를 보임에 따라 블랙푸드가 함유된 청국장이 체내 비타민 E 상태에 대한 보호효과가 기대된다. 뇌 조직의 TAC는 정상군에 비해 scopolamine으로 투여군에서 현저히 낮았으나, 약콩 및 블랙푸드가 함유된 약콩 청국장 섭취로 정상수준으로 TAC를 증가시킬 수 있었다. 따라서 scopolamine의 투여로 증가된 산화적 스트레스에 대하여 대두, 약콩 및 블랙푸드가 함유된 약콩 청국장 분말이 항산화 효과를 보였다. 그러므로 향후 산화적 스트레스에 의한 알츠하이머형 치매의 예방과 관리를 위하여 청국장 이외에 블랙푸드 섭취에 대한 중요성을 강조할 수 있는 근거 자료로 충분한 가치고 있을 것으로 판단된다.

Keywords

References

  1. Ahn HS, Kang SA, Lee LH (1999). Effects of vitamin E and vitamin C supplementation on the decrease in cognitive function induced by scoplolamine. J Nutrition 32: 239-247.
  2. Betteridge DJ (2000). What is oxidative stress? Metabolism 49: 3-8.
  3. Bieri JG, Tollver TJ, Catignani GL (1979). Simultaneous determination of alpha-tocopherol and retinol in plasma or red cells by high pressure liquid chromatography. Am J Clin Nutr 39: 2143-2149.
  4. Caragay AB (1992). Cancer-preventive foods and ingredients. Food Technol 4: 65-68.
  5. Chang MS, Chung KJ, Chang WK, Park SK (2011). The antioxidant activity of sesami semen nigrum on Leydig TM3 cells. Kor J Herbology 26: 133-138.
  6. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Am Assoc Immunol 149: 2736-2741.
  7. Cheon JS, Chung HC, Kim IS, Oh BH (2003). Blood markers of oxidative stress in dementia. J Korean Geriatr Psychiatry 7: 47-56.
  8. Cho EJ, Choi MJ, Shin SW, Kim HY (2012). Antioxidant activity of black rice and grains. J Agric Sci 39: 511-514.
  9. Cho YJ, Bang MA (2004). Hypoglycemic and antioxidative effects of dietary sea-tangle extracts supplementation in streptozotocin-induced diabetic rats. Korean J Nutr 37: 5-14.
  10. De Keyser J, De Klippel N, Merkx H, Vervaeck M, Herroelen L (1992). Serum concentrations of vitamins A and E and early outcome after ischaemic stroke. J Lancet 399: 1562-1565.
  11. Foy CJ, Passmore AP, Vahidassr MD, Young IS, Lawson JT (1999). Plasma chain- breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. Q J Med 92: 39-45. https://doi.org/10.1093/qjmed/92.1.39
  12. Furr HC, Amedee-Manesme O, Olson JA (1984). Gradient reversed-phased high-performance liquid chromatographic separation of naturally occuring retinoids. J Chroma 309: 299-307. https://doi.org/10.1016/0378-4347(84)80037-7
  13. Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76: 126-152. https://doi.org/10.1016/j.pneurobio.2005.06.001
  14. Hong JY, Shin SR, Kong HJ, Choi EM, Woo SC, Lee MH, Yang KM (2014). Antioxidant activity of extracts from soybean and small black bean. Korean J Food Preserv 21: 404-411. https://doi.org/10.11002/kjfp.2014.21.3.404
  15. Hughes TA, Wiles CM (1998). Neurogenic dysphagia: the role of the neurologist. J Neurol Neurosurg Psychiatry 64: 569-572. https://doi.org/10.1136/jnnp.64.5.569
  16. Jang JH, Surh YJ (2003). Protective effect of resveratrol on ${\beta}$ amyloid-induced oxidative PC12 cell death. Free Radical Bio Med 34: 1100-1110. https://doi.org/10.1016/S0891-5849(03)00062-5
  17. Jeandel C, Nicolas MB, Dubois F, Nabet-Belleville F, Penin F, Cuny G (1989). Lipid peroxidation and free radical scavengers in Alzheimer's disease. Gerontology 35: 275- 282. https://doi.org/10.1159/000213037
  18. Jung HA, Park JC, Chung HY, Kim J, Choi JS (1999). Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch Pharm Res 22: 213-218. https://doi.org/10.1007/BF02976549
  19. Jung HR (2011). Anti-amnesic effects of blueberry leaf extracts on Amyloid ${\beta}$ protein-induced Alzheimer's disease model. MS Thesis Kungsang University, Jinju, pp 46-48.
  20. Kim HS (2007). A study on the inhibitory effect of Yeongdamsagantang on Alzheimer in $A{\beta}$-oligomer-induced Neuro 2A cell lines. MS Thesis Daegu Haany University, Gyeongsansi, pp 12-25.
  21. Kim JH, Jeong CH, Choi GN, Kwak JH, Choi SG, Heo HJ (2009). Antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis using an in vitro system. Korean J Food Sci Technol 41: 712-716.
  22. Kim JM, Kim DH, Park SJ, Jung JW, Ryu JH (2010). Memory enhancing properties of the ethanolic extract of black sesame and its ameliorating properties on memory impairments in mice. Korean J Pharmacogn 41: 196-203.
  23. Kim YI, Park JY, Choi SJ, Kim JK, Jeong CH, Choi SG, Lee SC, Cho SH, Heo HJ (2008). Protective effect of green tea extract on amyloid ${\beta}$ peptide-induced neurotoxicity. Korean J Food Preserv 15: 743-748.
  24. Kim YS, Kang CO, Kim MH, Cha WS, Shin HJ (2011). Contents of water extract for Laminaria japonica and its antioxidant activity. Korean Society Biotechnology Bioengineering J 26: 112-118.
  25. Kubena KS, McMurray DN (1996). Nutrition and the immune system: A review of nutrient-nutrient interactions. J Am Diet Assoc 96: 1165-1164. https://doi.org/10.1016/S0002-8223(96)00298-2
  26. Kwak JH, Choi GN, Park JH, Kim JH, Jeong HR, Jeong CH, Heo HJ (2010). Antioxidant and neuronal cell protective effect of purple sweet potato extract. J Agric Life Science 44: 57-66.
  27. Lee C, Park GH, Lee JW, Jang JH (2015). Protective effect of wheat bran extract against ${\beta}$-amyloid-induced cell death and memory impairment. Kor J Herbology 30: 67-75.
  28. Lee JE (2000). Effect of vitamin C and E on antioxidant enzyme activity in rats with dementia induced by scopolamine. MS Thesis ChungAng University, Seoul, pp 23-26.
  29. Lee JS (2012). Protective effect of myelophil against scopolamine-induced memory deficit and brain oxidative stress in mice. MS Thesis Dejeon University, Dejeon, pp 89-90.
  30. Lee MR, Sun BS, Gu LJ, Wang CY, Fang ZM, Wang Z, Mo EK, Ly SY, Sung CK (2009). Effects of the deer antler extract on scopolamine-induced memory impairment and its related enzyme-activities. J Korean Soc Food Sci Nutr 38: 409-414. https://doi.org/10.3746/jkfn.2009.38.4.409
  31. Markesbery WR, Carney JM (1999). Symposium: Oxidative stress in neurological disease. Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146.
  32. Martin D (2000). Nutrition after stroke. British Medical Bulletin 56: 466-475. https://doi.org/10.1258/0007142001903102
  33. Mates JM, Sanchez-Jimenez F (1999). Antioxidant enzymes and their implications in pathophysiologic processes. Frontiers in Bioscience 4: d339-345. https://doi.org/10.2741/A432
  34. Park HS, Kong HJ, Lee EH, Choi EM, Jang JH, Lee MH, Hong JY, Hwang SJ, Jung HA, Yang MI (2015). Effect of Chungkukjang supplementation on oxidative stress and antioxidant nutrients of diabetic rats induced by streptozotocin. Korean J Food Preserv 22: 281-289. https://doi.org/10.11002/kjfp.2015.22.2.281
  35. Park HS, Shin SR, Hong JY, Yang KM (2013). Comparison of the antioxidant activities of small-black-bean-Chungkukjang-added black food and soybean Chungkukjang extracts. Korean J Food Preserv 20: 735-743. https://doi.org/10.11002/kjfp.2013.20.5.735
  36. Pyo HK, Joe EH, Jung SY, Lee SH, Jou I (1999). Gangliosides activate cultured rat brain microglia. J Biol Chem 274: 34584-34589. https://doi.org/10.1074/jbc.274.49.34584
  37. Repetto MG, Reides CG, Evelson P, Kohan S, de Lustig ES, Llesuy SF (1999). Peripheral markers of oxidative stress in probable Alzheimer patients. Eur J Clin Invest 29: 643-649. https://doi.org/10.1046/j.1365-2362.1999.00506.x
  38. Ritter AM, Robertson CS (1994). Cerebral metabolism. Neurosurg Clin N Am 5: 633-645.
  39. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grudman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997). A controlled trial of selegilline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336: 1216-1222. https://doi.org/10.1056/NEJM199704243361704
  40. Tohgi H, Abe T, Nakanishi M, Hamato F, Sasaki K, Takahashi S (1994). Concentrations of alpha-tocopherol and its quinone derivative in cerebrospinal fluid from patients with vascular dementia of the Binswanger type and Alzheimer type dementia. Neurosci Lett 174: 73-76. https://doi.org/10.1016/0304-3940(94)90122-8
  41. Um MY, Ahn JY, Kim S, Kim MK, Ha TY (2009). Sesaminol glucosides protect ${\beta}$-amyloid peptide-induced cognitive deficts in mice. Biol Pharm Bull 32: 1516-1520. https://doi.org/10.1248/bpb.32.1516
  42. Wallace DC (1992). Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256: 628-632. https://doi.org/10.1126/science.1533953
  43. Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K, Kawasaki T (1983). A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of ${\alpha}$-tocopherol administration. Stroke 14: 977-982. https://doi.org/10.1161/01.STR.14.6.977
  44. Yang JL, Lee SH, Song YS (2003). Improving effect of powders of cooked soybean and Chongkukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. J Korean Soc Food Aci Nutr 32: 899-905. https://doi.org/10.3746/jkfn.2003.32.6.899
  45. Yoshida S, Busto R, Watson BD, Santiso M, Ginsberg MD (1985). Postischemic cerebral lipid peroxidation in vitro: modification by dietary vitamin E. J Neurochem 44: 1593 -1601. https://doi.org/10.1111/j.1471-4159.1985.tb08800.x
  46. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley ACD (1992). Plasma concentration of vitamin A and E and carotenoids in Alzheimer’s disease. Oxfords J Medicine & Health Age Ageing 21: 91-94.