DOI QR코드

DOI QR Code

Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5

항진균활성 violacein 색소를 생산하는 Collimonas sp. DEC-B5 균주의 분리 및 특성

  • Lee, Ye-Rim (Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University) ;
  • Mitchell, Robert J. (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Whang, Kyung-Sook (Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University)
  • 이예림 (목원대학교 미생물나노소재학과) ;
  • ;
  • 황경숙 (목원대학교 미생물나노소재학과)
  • Received : 2016.06.10
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

Forty-nine pigments were extracted from the collections of 106 pigment producing bacteria from the plant rhizosphere soil. Antibacterial activity test was performed in the subjects of the extracted pigments with plant pathogenic bacteria including Xanthomonas axonopodis and Xanthomonas campestris, and with plant pathogenic fungi including Botrytis cinerea, Colletotrichum acutatum, and Fusarium oxysporum. The yellow pigment by Chryseobacterium sp. RBR9 and the red pigment by of Methylobacterium sp. RI13 showed the antibacterial activities against Xanthomonas axonopodis and Xanthomonas campestris. The violet pigment by Collimonas sp. DEC-B5 showed the antibacterial activity as well as the antifungal activities against Botrytis cinerea and Fusarium oxysporum. Especially, the violet pigment inhibited the growth of Botrytis cinerea more than 65% at MIC $20{\mu}M$. Upon the HPLC analysis result for the isolation of pigment with antifungal activity, violacein (91.6%) and deoxyviolacein (8.4%) were isolated for the pigment by Collimonas sp. DEC-B5. The production amount of the pigment was increased more than 10 times higher when D-mannitol 1.5% and yeast extract 0.2% were added as the nitrogen source to SCB medium. This study suggests that produced violacein by Collimonas sp. DEC-B5 will be effective to control strawberry gray-mold rot fungi by its preventive activity.

식물 근권 토양으로부터 색소생성 균주 106균주를 수집하여 색소 생성능이 우수한 균주로부터 노란색(33개), 주황색(12개), 분홍색, 빨간색, 갈색 그리고 보라색 총 49개의 세균색소를 추출하였다. 식물병원균에 대한 항균활성능이 우수한 색소를 선발하기 위하여 고추점무늬병원균(Xanthomonas axonopodis), 흑마병원균(Xanthomonas campestris)과 딸기잿빛곰팡이병원균(Botrytis cinerea), 고추탄저병원균(Colletotrichum acutatum), 그리고 시들음병원균(Fusarium oxysporum)을 대상으로 항균활성 검정을 수행하였다. 색소생성 Chryseobacterium sp. RBR9 균주가 생산하는 노란색 색소와 Methylobacterium sp. RI13 균주가 생산하는 빨간색 색소는 X. axonopodis와 X. campestris에 항세균 활성을 나타내었다. 차나무 토양으로부터 분리된 Collimonas sp. DEC-B5가 생산하는 보라색 색소는 항세균 활성과 더불어 B. cinerea와 Colletotrichum acutatum에 항진균활성을 나타내었다. 특히, 보라색 색소는 최소저해 농도 $20{\mu}M$에서 B. cinerea를 65% 이상 생육 저해하였다. 항진균활성 보라색 색소를 HPLC 분석한 결과, violacein (91.6%)와 deoxyviolacein(8.4%)으로 동정되었다. 보라색 색소 violacein의 생산량은 SCB 배지에서 $43.2{\mu}M$이었고 D-mannitol 1.5%, yeast extract 0.2%를 첨가한 경우 $431.6{\mu}M$로 약 10배 높은 색소 생성량을 나타내었다. 본 연구에서 분리된 Collimonas sp. DEC-B5가 생산하는 violacein 색소는 딸기잿빛곰팡이병원균 방제제로 활용 가능성이 확인되었다.

Keywords

References

  1. Atlas, R.M. and Bartha, R. 1998. Interactions between microorganisms and plants. Microb. Ecol. 4, 99-140.
  2. Brucker, R.M., Harris, R.N., Schwantes, C.R., Gallaher, T.N., Flaherty, D.C., Lam, B.A., and Minbiole, K.P. 2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon inereus. J. Chem. Ecol. 34, 1422-1429. https://doi.org/10.1007/s10886-008-9555-7
  3. Chang, J.Y., Lee, H.H., Kim, I.C., and Chang, H.C. 2001. Characterization of a bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr. 30, 227-233.
  4. Choi, S.Y., Kim, S., Lyuck, S., Kim, S.B., and Mitchell, R.J. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci. Rep. 5, 15598. https://doi.org/10.1038/srep15598
  5. Green, P.N. and Bousfield, I.J. 1983. Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov., corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33, 875-877. https://doi.org/10.1099/00207713-33-4-875
  6. Griffiths, J.C. 2005. Coloring Foods & Beverages. Foodtechnology 59, 38-44.
  7. Guo, R., Liu, X., Li, S., and Miao, Z. 2009. In vitro inhibition of fungal rootrot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol. J. 25, 70-76. https://doi.org/10.5423/PPJ.2009.25.1.070
  8. Hackl, E., Boltenstern, S., Bodrossy, L., and Sessitsch, A. 2004. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 7, 5057-5065.
  9. Hakvag, S., Fjaervik, E., Klinkenberg, G., Borgos, S., Josefsen, K., Ellingsen, T., and Zotchev, S. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trondelag, Norway. Mar. Drugs 7, 576-588. https://doi.org/10.3390/md7040576
  10. Jang, C.S., Lim, J.H., Seo, M.W., Song, J.Y., and Kim, H.G. 2010. Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested PCR from soil samples. Mycobiology 38, 33-38. https://doi.org/10.4489/MYCO.2010.38.1.033
  11. Kang, D.W., Ryu, I.H., and Han, S.S. 2012. The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens. Kor. J. Pestic. Sci. 16, 178-186. https://doi.org/10.7585/kjps.2012.16.2.178
  12. Kim, S.J., Fhi, J.W., Kang, S.G., and Jung, S.T. 1997. Characteristics and stability of pigments produced by Monascus anka in a jar fermenter. J. Korean Soc. Food Sci. Nutr. 26, 60-66.
  13. Kim, H.S., Sang, M.K., Jung, H.W., Jeun, Y.C., Myung, I.S., and Kim, K.D. 2012. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Protect. 32, 129-137. https://doi.org/10.1016/j.cropro.2011.10.018
  14. Kobylewski, S. and Jacobson, M.F. 2012. Toxicology of food dyes. Int. J. Occup. Environ. Health 18, 220-246. https://doi.org/10.1179/1077352512Z.00000000034
  15. Konovalova, H.M., Shylin, S.O., and Rokytko, P.V. 2007. Characteristics of carotinoids of methylotrophic bacteria of Methylobacterium genus. Mikrobiol. Z. 69, 35-41.
  16. Malik, K., Tokkas, J., and Goyal, S. 2012. Microbial pigments: A review. Int. J. Microbial. Resour. Technol. 1, 361-365.
  17. Matz, C., Deines, P., Boenigk, J., Arndt, H., Eberl, L., Kjellberg, S., and Jurgens, K. 2004. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl. Environ. Microbiol. 70, 1593-1599. https://doi.org/10.1128/AEM.70.3.1593-1599.2004
  18. Mendes, A.S., De Carvalho, J.E., Duarte, M.C.T., Duran, N., and Bruns, R.E. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol. Lett. 23, 1963-1969. https://doi.org/10.1023/A:1013734315525
  19. Nakamura, Y., Asada, C., and Sawada, T. 2003. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioproc. Eng. 8, 37-40. https://doi.org/10.1007/BF02932896
  20. Ordentlich, A., Elad, Y., and Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78, 84-87.
  21. Pantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., and Schippa, S. 2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102, 992-999.
  22. Rettori, D. and Duran, N. 1998. Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14, 685-688. https://doi.org/10.1023/A:1008809504504
  23. Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D., and Yegenoglu, Y. 1993. 5-(4-aminophenyl)-4-substituted-2, 4-dihydro-3H-1, 2, 4-triazole-3-thiones: synthesis and antibacterial and antifungal activities. Pharmazie 48, 308-309.
  24. Ryu, B.H. and Kim, M.J. 2000. Production of red pigment from marine bacterium utilizing colloidal chitin. Kor. J. Microbiol. Biotechnol. 28, 264-269.
  25. Sanchez, C., Brana, A.F., Mendez, C., and Salas, J.A. 2006. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chembiochem 7, 1231-1240. https://doi.org/10.1002/cbic.200600029
  26. Selvameenal, L., Radhakrishnan, M., and Balagurunathan, R. 2009. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Int. J. Pharm. Sci. 4, 499-504.
  27. Shirata, A., Tsukamoto, T., Yashui, H., Kato, H., Hayasaka, S., and Kojima, A. 1997. Production of bluish-purple pigments by Janthinobacterium lividum isolated from the raw silk and dyeing with them. J. Sericult. Sci. Jpn. 66, 377-385.
  28. Van Aken, B., Peres, C.M., Doty, S.L., Yoon, J.M., and Schnoor, J.L. 2004. Methylobacterium populi sp. nov., a novel aerobic, pinkpigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoids 6nigra DN34). Int. J. Syst. Evol. Microbiol. 54, 1191-1196. https://doi.org/10.1099/ijs.0.02796-0
  29. Venil, C.K., Zakaria, Z.A., and Ahmad, W.A. 2013. Bacterial pigments and their applications. Process Biochem. 48, 1065-1079. https://doi.org/10.1016/j.procbio.2013.06.006
  30. Wang, H., Wang, F., Zhu, X., Yan, Y., Yu, X., Jiang, P., and Xing, X.H. 2012. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem. Eng. J. 67, 148-155. https://doi.org/10.1016/j.bej.2012.06.005
  31. Wood, A.P., Kelly, D.P., McDonald, I.R., Jordan, S.L., Morgan, T.D., Khan, S., Murrell, J.C., and Borodina, E. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169, 148-158. https://doi.org/10.1007/s002030050554
  32. Wu, Y.F., Wu, Q.L., and Liu, S.J. 2013. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int. J. Syst. Evol. Microbiol. 63, 913-919. https://doi.org/10.1099/ijs.0.040337-0
  33. Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I., Arakawa, R., and Enomoto, K. 2008. Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar. Biotechnol. 10, 128. https://doi.org/10.1007/s10126-007-9046-9

Cited by

  1. Zooshikella sp. 17TA 색소 추출물의 물리화학적 안정성과 항균활성 vol.11, pp.2, 2016, https://doi.org/10.15433/ksmb.2019.11.2.089
  2. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production vol.31, pp.11, 2016, https://doi.org/10.4014/jmb.2107.07045
  3. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin vol.15, pp.1, 2021, https://doi.org/10.1186/s13036-021-00262-9