DOI QR코드

DOI QR Code

Antioxidant and Anti-Melanogenic Activities of Hyssopus officinalis Extracts

히솝 추출물의 항산화 효과 및 멜라닌 생성 저해효과

  • Received : 2016.04.26
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

Hyssopus officinalis is a herbaceous plant of the genus Hyssopus. Due to its properties as an antiseptic, cough reliever and expectorant, it is commonly used as an aromatic herb and medicinal plant. This study was performed to investigate the anti-oxidative and anti-melanogenic properties of Hyssopus officinalis extracts (HE) using in vitro assays and cell culture systems. As a result, HE showed higher DPPH and ABTS radicals scavenging activity in a dose-dependent manner. Also, HE inhibited the prodution of intracellular ROS and melanin contents in B16F10 melanoma cell as well as tyrosinase activity. We also found that HE inhibit mRNA expression of MITF, tyrosinase and TRP-2 gene. These findings suggest that HE may be beneficial for preventing oxidative damage and melanogenesis of skin.

히솝(Hyssopus officinalis)은 통화식물목 꿀풀과의 여러해살이풀로 방부제, 기침, 거담제 등 일반적으로 방향족 허브와 약용식물로 사용되어왔다. 본 연구에서는 항산화 및 미백소재의 개발을 위해 히솝을 열수와 주정으로 추출하여 각 추출물의 in vitro 상에서의 항산화 효과 및 B16F10 melanoma 세포에서 멜라닌 생성 저해효과를 평가하였다. DPPH와 ABTS assay 시험법을 이용하여 항산화 효과를 측정한 결과, 히솝 추출물의 항산화 활성이 모두 농도 의존적으로 증가하였다. 또한 히솝 추출물은 tyrosianse 활성을 저해시켰으며, B16F10 세포에서 UVB로 증가된 활성산소와 ${\alpha}$-MSH로 유도된 멜라닌 또한 감소시키는 효과를 보였다. 멜라닌 생합성에 관여하는 유전자의 발현에 미치는 영향을 알아보기 위해 RT-PCR을 실시한 결과 히솝 추출물에 의해 MITF, tyrosinase, TRP-2의 발현이 감소되는 것을 확인할 수 있었다. 이러한 결과에 따라 히솝 추출물은 미백개선을 위한 화장품 소재로서 이용 가능성이 높을 것으로 사료된다.

Keywords

References

  1. C. A. Ferguson and S. H. Kidson, The regulation of tyrosinase gene transcription, Pigment Cell Res., 10(3), 127 (1997). https://doi.org/10.1111/j.1600-0749.1997.tb00474.x
  2. D. Tobin, A. Quinn, S. Ito, and A. Thody, The presence of tyrosinase and related protein in human epidermis and their relationship in melanin type, Pigment Cell Res., 7(4), 204 (1994). https://doi.org/10.1111/j.1600-0749.1994.tb00050.x
  3. K. N. Kim, H. M. Yang, S. M. Kang, D. Kim, C. Ahn, and Y. J. Jeon, Octaphlorethol a isolated from Ishige foliacea inhibits ${\alpha}$-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells, Food Chem. Toxicol., 59, 521 (2013). https://doi.org/10.1016/j.fct.2013.06.031
  4. S. Y. Choi, Y. C. Kim, and B. S. Chang, Inhibitory effect of black tea water extract on melanogenesis in melan-a cells and its action mechanism, Korean J. Microsc., 41(3), 169 (2011).
  5. H. C. Huang, W. Y. Hsieh, Y. L. Nin, and T. M. Chang, Inhibitory effects of adlay extract on melanin production and cellular oxygen stress in B16F10 melanoma cells, Int. J. Mol. Sci., 15(9), 16665 (2014). https://doi.org/10.3390/ijms150916665
  6. M. Tsatmali, J. Ancans, and A. J. Thody, Melanocyte fuction and its control by melanocortin peptides, J. Histochem. Cytochem., 50(2), 125 (2002). https://doi.org/10.1177/002215540205000201
  7. S. Alaluf, A. Heath, N. Carter, D. Atkins, H. Mahalingam, K. Barrett, R. Kolb, and N. smit, Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI, Pigment Cell Res., 14(5), 337 (2001). https://doi.org/10.1034/j.1600-0749.2001.140505.x
  8. J. Cabanes, S. Chazarra, and F. Garcia-Carmona, Kojic acid, a cosmetic skin whitening agent, is aslow-binding inhibitor of catecholase activity of tyrosinase, J. Pharm. Pharmacol., 46(12), 982 (1997). https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  9. V. Del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
  10. T. Kobayashi, K. Urabe, and A. J. Winder, Tyrosinase related protein (TRP-1) functions as a DHICA oxidase activity in melanin biosynthesis, EMBO J., 13(24), 5818 (1994).
  11. E. V. Curto, C. Kwong, H. Hermersdorfer, H. Glatt, C. Santis, V. Virador, V. J. Hearing, and P. Dooley, Inhibitors of mamalian melanocytes tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors, Biochem. Pharmacol., 57(6), 663 (1999). https://doi.org/10.1016/S0006-2952(98)00340-2
  12. J. K. No, D. Y. Soung, Y. J. Kim, K. H. Shim, Y. S. Jun, S. H. Rhee, T. Yokizawa, and H. Y. Chung, Inhibition of tyrosinase by green tea components, Life Sci., 65(21), 241 (1999).
  13. G. Prota, Recent advances in the chemistry of melanogenesis in mammals, J. Invest. Dermatol., 75(122), 31 (1990).
  14. S. H. Lee, J. S. Park, S. Y. Kim, J. J. Kim, and S. R. Chung, Isolation of inhibitory components on tyrosinase activity from the bark of Paeonia moutan, J. Pharm. Soc. Korea, 42(4), 353 (1998).
  15. E. J. Seo, E. S. Hong, M. H. Choi, K. S. Kim, and S. J. Lee, Antioxidant and skin whitening effects of Rhamnus yoshinoi extracts, Korean J. Food Sci. Technol., 42(6), 750 (2010).
  16. J. Lopez, R. Tudela, F. Varon, G. Carmona, and F. G. Canovas, Analysis of a kinetic model for melanin biosynthesis pathway, J. Biol. Chem., 267(6), 381 (1992).
  17. R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cells Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  18. B. Saha, S. K. Singh, C. Sarkar, R. Bera, J. Ratha, D. J. Tobin, and R. Bhadra, Activation of the MITF promoter by lipid-stimulated activation of p38-stress signalling to CREB, Pigment Cells Res., 19(6), 595 (2006). https://doi.org/10.1111/j.1600-0749.2006.00348.x
  19. I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol. Cell. Biol., 18(12), 6930 (1998). https://doi.org/10.1128/MCB.18.12.6930
  20. C. A. Hodgkinson, K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copel, N. A. Jenkins, and H. Arnheiter, Mutations at the mouse microphthalmi a locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein, Cell, 74(2), 395 (1993). https://doi.org/10.1016/0092-8674(93)90429-T
  21. E. Steingrimsson, K. J. Moore, M. L. Lamoreux, A. R. Ferre-D'Amare, S. K. Burley, D. C. Zimring, L. C. Skow, C. A. Hodgkinson, H. Arnheiter, N. G. Copeland, and N. A. Jenkins, Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences, Nat. Genet., 8(3), 256 (1994). https://doi.org/10.1038/ng1194-256
  22. H. R. Widlund and D. E. Fisher, Microphthalamia associated transcription factor: a critical regulator of pigment cell development and survival, Oncogene, 22(20), 3035 (2003). https://doi.org/10.1038/sj.onc.1206443
  23. S. Mallick, S. K. Singh, C. Sarkar, B. Saha, and R. Bhadra, Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and its related protein in vitro, Pigment Cell Res., 18(1), 25 (2005). https://doi.org/10.1111/j.1600-0749.2004.00193.x
  24. J. P. Ortonne and T. Passeron, Melanin pigmentary disorders: treatment update, Dermatol. Clin., 23(2), 209 (2005). https://doi.org/10.1016/j.det.2005.01.001
  25. M. Nakagawa and K. Kawai, Contact allergy to kojic acid in skin care products, Contact Derm., 32(1), 9 (1995). https://doi.org/10.1111/j.1600-0536.1995.tb00832.x
  26. E. K. Kwon, Y. E. Kim, C. H. Lee, and H. Y. Kim, Screening of nine herbs with biological activities on ACE inhibition HMG-CoA reductase inhibition, and fibrinolysis, Korean J. Food Sci. Technol., 38(5), 691 (2006).