DOI QR코드

DOI QR Code

동위원소 생산공정에서 발생한 방사성 폐기물 장기저장소 온도평가

Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production

  • 정남균 (인하공업전문대학 기계공학과) ;
  • 조대성 (경북대학교 기계공학부)
  • Jeong, Namgyun (Dept. of Mechanical Engineering, Inha Technical College) ;
  • Jo, Daeseong (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2015.12.14
  • 심사 : 2016.05.23
  • 발행 : 2016.07.01

초록

본 연구는 의료용 동위원소 생산공정에서 발생하는 방사성폐기물을 저장하는 장기저장소의 온도를 두 가지 방법으로 평가한 결과를 보여준다. 방사성폐기물에서 발생하는 열을 Volume source와 Point source로 가정하여 장기저장소의 온도를 평가한 결과, 폐기물 저장위치에 따른 최대온도분포는 유사하게 나타났으나 그 크기에 있어서 최대 $5^{\circ}C$ 정도의 차이를 보였다. 따라서, 개념설계를 위해서는 해석 시간이 오래 걸리는 Volume source를 이용한 3차원 해석보다는 Point source를 이용한 2차원 해석이 보다 효율적이지만, 상세 설계를 위한 정확한 해석 결과를 얻기 위해서는 Volume source를 이용한 3차원 해석이 수반되어야 함을 알 수 있다.

In the present study, temperature evaluations on long-term storage of radioactive waste produced in the process of isotope production were performed using two different methods. Three-dimensional analysis was carried out assuming a volumetric heat source, while two-dimensional studies were performed assuming a point source. The maximum temperature difference between the predictions of the volumetric and point source models was approximately $5^{\circ}C$. For the conceptual design level, a point source model may be suitable to obtain the overall temperature characteristics of different loading locations. For more detailed analysis, the model with the volumetric source may be applicable to optimize the loading pattern in order to obtain minimum temperatures.

키워드

참고문헌

  1. Nuclear Technology Review 2010, "Production and Supply of Molybdenum-99," International Atomic Energy Agency.
  2. Wu, S., Song, J. S., Kwon, T. H., Kim, J. Y., Lim, I. C. and Ha, J. J., 2013, "New Research Reactor Project in Korea," 15th International Group on Research Reactor, Oct. 13-18, 2013, Daejeon, Korea.
  3. Ball, R. M., 1999, "Production Technologies for Molybdenum-99 and Technetium-99m: Characteristics of Nuclear Reactors used for the Production of Molybdenum-99," IAEA-TECDOC-1065.
  4. Lambrecht, R. M., Sekine, T. and Vera Ruiz, H., 1999, "Production Technologies for Molybdenum-99 and Technetium-99m: the Accelerator Production of Molybdenum-99," IAEA-TECDOC-1065.
  5. Jo, D., Lee, K. H., Kim, H. C. and Chae, H., 2014, "Neutronic and Thermal Hydraulic Analyses of LEU Targets Irradiated in a Research Reactor for Molybdenum-99 Production," Annals of Nuclear Energy, Vol. 71, pp. 467-474. https://doi.org/10.1016/j.anucene.2014.04.017
  6. Mohammad, A., Mahmood, T. and Iqbal, M., 2009, "Fission Moly Production at PARR-1 using LEU Plate Target," Nuclear Engineering and Design, Vol. 239, pp. 521-525. https://doi.org/10.1016/j.nucengdes.2008.11.008
  7. ANS/5.1/N18.6, 1973. Decay Energy Release Rates Following Shutdown of Uranium-fueled Thermal Reactors. ANS-5.1
  8. ANSYS, "CFX-Solver Theory Guide (Release 15.0)," ANSYS, Inc., Canonsburg, 2013.
  9. Jo, D. and Seo, C. G., 2015, "Effects of Transverse Power Distribution on Thermal Hydraulic Analysis," Progress in Nuclear Energy, Vol. 81, pp. 16-21. https://doi.org/10.1016/j.pnucene.2014.12.017
  10. Klein, S and Nellis, G., "Mastering EES," F-Chart Software, Madison, 2012.