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COMMON FIXED POINT THEOREMS OF MEIR-KEELER TYPE
ON MULTIPLICATIVE METRIC SPACES

Bhavana Deshpande a, ∗ and Sajad Ahmad Sheikh b

Abstract. In this paper, we present some common fixed point theorems for two
pairs of weakly compatible self-mappings on multiplicative metric spaces satisfy-
ing a generalized Meir-Keeler type contractive condition. The results obtained in
this paper extend, improve and generalize some well known comparable results in
literature.

1. Introduction

The classical results of Banach contraction principle [3], which is one of the
most celebrated fixed point theorem, have been the inspiration for many researchers
working in the area of metric fixed theory. In 1969, Meir and Keeler [14] obtained
a remarkable generalization of the Banach contraction principle and since then the
theorem has been extended in many directions. In 1976, Jungck [10] generalized the
Banach contraction principle by introducing the idea of commuting maps. Introduc-
ing weakly commuting maps, Sessa [21] generalized the concept of commuting maps.
Then Jungck generalized this idea, first to compatible mappings [11] and then to
weakly compatible mappings [9].

In 2008, Bashirov et al. [4] studied the usefulness of a new calculus, called mul-
tiplicative calculus and defined a new distance, the so called multiplicative distance
between two nonnegative real numbers as well as between two positive square matri-
ces, by using the concept of a multiplicative absolute value. This provides the basis
for multiplicative metric space. In 2012, Ozavsar and Cevikel [15] introduced the
concept of multiplicative metric spaces by using the idea of multiplicative distance,
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and gave some topological properties in such space. They also introduced the con-
cept of multiplicative Banach’s contraction mapping and proved fixed point results
of such mapping on multiplicative metric spaces.

In 2002, Aamri and El-Moutawakil [1] introduced the notion of (E.A) property
for self mappings which contained the class of non-compatible mappings in metric
spaces. It was pointed out that (E.A) property allows replacing the completeness
requirement of the space with a more natural condition of closedness of the range
as well as relaxes the complexness of the whole space, continuity of one or more
mappings and containment of the range of one mapping into the range of other
which is utilized to construct the sequence of joint iterates. In 2009, Abbas et
al. [2] introduced the concept of common property (E.A). For more on (E.A) and
common (E.A) properties, we refer to [1] and [12]. Recently in 2012, Chauhan et
al. [6] introduce the notion of the joint common limit in the range of mappings
property called (JCLR) property and proved a common fixed point theorem for a
pair of weakly compatible mappings using (JCLR) property in fuzzy metric space.

The aim of this paper is to present some common fixed point theorems for two
pairs of weakly compatible self-mappings in multiplicative metric spaces satisfying a
generalized Meir-Keeler type contractive condition. The results obtained in this pa-
per extend improve and generalize some well known comparable results in literature,
in particular the results obtained in [5], [8], [13], [17-20].

2. Preliminaries

Definition 2.1 ([4]). Let X be a nonempty set. A multiplicative metric is a mapping
d : X ×X → R+ satisfying the following conditions:

(i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z)·d(z, y) for all x, y, z ∈ X (multiplicative triangle inequality).
The pair (X, d) is called a multiplicative metric space.

Example 2.2 ([15]). Let Rn
+ be the collection of n-tuples of positive real numbers.

Let d : Rn
+ ×Rn

+ → R be defined as follows:
d(x, y) = ||x1y1 · ||x2y2 · · · ||xnyn,

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn
+ and |·| : R+ → R+ is defined

as follows: |a| =
{

a,
..1a,

if a ≥ 1,
if a < 1.
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Then it is obvious that all conditions of a multiplicative metric are satisfied.

Example 2.3. Let d : R×R → [1,∞) be defined as d(x, y) = e|x−y|, where x, y ∈ R.
Then d is a multiplicative metric.

Definition 2.4 ([15]). Let (X, d) be a multiplicative metric space, {xn} be a se-
quence in X and x ∈ X. If for every multiplicative open ball Bε(x) = {y | d(x, y) <

ε}, ε > 1, there exists a natural number N such that n ≥ N, then xn ∈ Bε(x).
The sequence {xn} is said to be a multiplicative converging to x, denoted by xn →
x (n →∞).

Proposition 2.5 ([15]). Let (X, d) be a multiplicative metric space, {xn} be a
sequence in X and x ∈ X. Then xn → x (n →∞) if and only if d(xn, x) → 1 (n →
∞).

Definition 2.6 ([15]). Let (X, d) be a multiplicative metric space, {xn} be a se-
quence in X. The sequence is called a multiplicative Cauchy sequence if it holds for
all ε > 1, there exists N ∈ N such that d(xn, xm) < ε for all m,n > N.

Proposition 2.7 ([15]). Let (X, d) be a multiplicative metric space and {xn} be
a sequence in X. Then {xn} is a multiplicative Cauchy sequence if and only if
d(xn, xm) → 1 (n,m →∞).

Definition 2.8 ([15]). A multiplicative metric space (X, d) is said to be multi-
plicative complete if every multiplicative Cauchy sequence in (X, d) is multiplicative
convergent in X.

Proposition 2.9 ([15]). Let (X, dX) and (Y, dY ) be two multiplicative metric
spaces, S : X → Y be a mapping and {xn} be any sequence in X. Then S is
multiplicative continuous at x ∈ X if and only if S(xn) → S(x) for every sequence
{xn} with xn → x (n →∞).

Proposition 2.10 ([15]). Let (X, dX) be a multiplicative metric space, {xn} and
{yn} be two sequences in X such that xn → x, yn → y (n → ∞), x, y ∈ X. Then
d(xn, yn) → d(x, y) (n →∞).

Definition 2.11 ([7]). The self-maps S and T of a multiplicative metric space (X, d)
are said to be compatible if lim

n→∞d(STxn, TSxn) = 1, whenever {xn} is a sequence
in X such that lim

n→∞Sxn = lim
n→∞Txn = t, for some t ∈ X.
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Definition 2.12 ([7]). Suppose that S and T are two self mappings on a multiplica-
tive metric space (X, d). The pair (S, T ) is called weakly compatible if Sx = Tx, x ∈
X implies STx = TSx. That is, d(Sx, Tx) = 1 ⇒ d(STx, TSx) = 1.

Remark 2.13. Compatible mappings must be weakly compatible, but the converse
is not true.

3. Main Results

We start our work by introducing the following three concepts on multiplicative
metric spaces.

Definition 3.1. Let S and T be two self mappings on a multiplicative metric space
(X, d). We say that S and T satisfy the property (E.A) if there exists a sequence
{xn} in X such that

lim
n→∞Sxn = lim

n→∞Txn = z

for some z ∈ X.

Example 3.2. Let X = [0,∞) and let (X, d) be a multiplicative metric space
defined by d(x, y) = e|x−y|. Define self-mappings T and S on X by T (x) = 2x − 1
and S(x) = x2 for all x in X. For xn = 1− ..1n, we have,

lim
n→∞Txn = lim

n→∞Sxn = 1 ∈ X.

Thus the pair (S, T ) satisfies the property (E.A).

Definition 3.3. Let A,B, S and T be four self mappings on a multiplicative metric
space (X, d). The pairs (A,S) and (B, T ) are said to satisfy the common property
(E.A) if there exists two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = z

for some z ∈ X.

Example 3.4. Let X = [1,∞) and (X, d) be a multiplicative metric space defined
by d(x, y) = e|x−y| for all x, y in X. Define self maps A,B, S and T on X by

Ax = 3x− 1 for all x, Bx = x for all x, Sx = x + 1 for all x, and Tx = 4− x if
1 ≤ x ≤ 3 and Tx = x− 2 if x > 3.

Take xn = 1 + ..1n and yn = 2− ..1n, one can easily verify that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = 2
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This shows that the pairs (A,S) and (B, T ) satisfy common property (E.A).

Definition 3.5. Let A,B, S and T be four self mappings on a multiplicative metric
space (X, d). The pairs (A,S) and (B, T ) are said to satisfy the (JCLR) property,
if there exists two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = Sz = Tz

for some z ∈ X.

Example 3.6. Let X = [0,∞) and (X, d) be a multiplicative metric space defined
by d(x, y) = e|x−y| for all x, y in X. Define self maps A,B, S and T on X by

Ax =
{

2,
x + 3,

if 0 ≤ x ≤ 2,
if 2 < x ≤ ∞,

Sx =
{

4− x,
x + 5,

if 0 ≤ x ≤ 2,
if x > 2,

Bx =
{

2,
3x− 1,

if 0 ≤ x ≤ 2,
if 2 < x ≤ ∞,

Tx =
{

x,
x + 1,

if 0 ≤ x ≤ 2,
if x > 2.

Take {xn = 2− ..1n} and {yn = 2− ..1n}. Then

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Tyn lim

n→∞Byn = 2 = T (2) = S(2).

Thus the pairs (A,S) and (B, T ) satisfy the (JCLR) property.

Theorem 3.7. Let A,B, S and T be four self mappings on a multiplicative metric
space (X, d) satisfying the following conditions

(3.7.1) AX ⊆ TX and BX ⊆ SX;
(3.7.2) given an ε > 1 and for all x, y ∈ X, there exists a δ ∈ (1, ε), such that

(1) ε ≤ m(x, y) < ε + δ ⇒ d(Ax,By) < ε

where m(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty)}
(3.7.3) one of AX,BX,SX or TX is a complete subspace of X.

Then
(I) A and S have a coincidence point,
(II) B and T have a coincidence point.
Moreover, if the pairs (A,S) as well as (B, T ) are weakly compatible, then the

maps A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Define sequences {xn} and {yn} in X by
using (3.7.1), we have

Ax2n−2 = Tx2n−1 = y2n−1
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and

(2) Bx2n−1 = Sx2n = y2n.

We claim that {yn} is a Cauchy sequence. Let dn = d(yn, yn+1).
Two cases arises. Suppose that dn = 1 for some n = 2k−1. Then d(y2k−1, y2k) =

1. This gives y2k−1 = y2k, which implies that Tx2k−1 = Ax2k−2 = Sx2k = Bx2k−1,

so T and B have a coincidence point. Further, if dn = 1 for some n = 2k, then
d(y2k, y2k+1) = 1. This gives y2k = y2k+1, which implies that Tx2k+1 = Ax2k =
Sx2k = Bx2k−1, so A and S have a coincidence point.

Now suppose that dn 6= 1 for all n.

If for some x, y ∈ X, d(x, y) = 1 then we get Ax = Sx and By = Ty. Hence the
result

If m(x, y) > 1 for all x, y ∈ X, then by (1), we have

(3) d(Ax,By) < m(x, y)

Hence, we have

d2n−1 = d(y2n−1, y2n) = d(Ax2n−2, Bx2n−1)

< m(x2n−2, x2n−1)

= max {d(Sx2n−2, Tx2n−1), d(Ax2n−2, Sx2n−2), d(Bx2n−1, Tx2n−1)}
= max {d(y2n−2, y2n−1), d(y2n−1, y2n−2), d(y2n, y2n−1)}
= max {d2n−2, d2n−1} = d2n−2

Therefore,

(4) d2n−1 < d2n−2

Similarly,

d2n < d2n−1.

Hence we deduce that dn < dn−1 for all n.

Thus {dn} is a strictly decreasing sequence of positive real numbers. Hence
converges to some limit, say p i.e.,

(5) lim
n→∞dn = p

Next we claim that p = 1. If p 6= 1, then by (5), there exists a δ > 1 and a natural
number r such that for each n ≥ r,

(6) p < d(yn, yn+1) = dn ≤ p + δ
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In particular

m(x2n−1, x2n) = max {d(Sx2n−1, Tx2n), d(Ax2n−1, Sx2n−1), d(Bx2n, Tx2n)}
= max {d(y2n−1, y2n), d(y2n, y2n−1), d(y2n+1, y2n)}
= max {d2n−1, d2n} = d2n−1,

and we get

p < d2n−1 ≤ p + δ

Therefore, by using (1)

d(Ax2n, Bx2n−1) = d(y2n+1, y2n) = d2n < p,

a contradiction. Hence p = 1; i.e.,

lim
n→∞dn = lim

n→∞d(yn, yn+1) = 1

Now for any positive integer m > n, we have

d(yn, ym) ≤ d(yn, yn+1) · d(yn+1, yn+2)...d(ym−1, ym)

Since, lim
n→∞d(yn, yn+1) = 1, it follows that

lim
n→∞d(yn, ym) ≤ 1 · 1...1 = 1

which shows that {yn} is a multiplicative Cauchy sequence in X.

Now suppose that SX is a complete subspace of X. Then the subsequence y2n =
Sx2n must have a limit in SX, call it z, and v ∈ S−1(z), so that Sv = z. As {yn}
is a Cauchy sequence containing a convergent subsequence {y2n}, the sequence {yn}
also converges to z.

First we claim that Av = z. Suppose not, then on setting x = v and y = x2n−1

in (3), we get

d(Av,Bx2n−1) < m(v, x2n−1)

= max{d(Sv, Tx2n−1), d(Av, Sv), d(Bx2n−1, Tx2n−1)}
Taking the limit as n →∞, we have

d(Av, z) < max{d(z, z), d(Av, z), d(z, z)}
= d(z, Av)

a contradiction. Therefore Av = z = Sv. Hence the pair (A,S) has a point of
coincidence. As AX ⊆ TX, Av = z implies that z ∈ TX. Let w ∈ T−1(z), then
Tw = z.
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Next we claim that Bw = z. Suppose not, again by using (3), we get

d(y2n+1, Bw) = d(Ay2n, Bw) < m(y2n, w)

= max{d(Sy2n, Tw), d(Sy2n, Ay2n), d(Bw, Tw)}

Taking the limit as n →∞, we have

d(z, Bw) < max{d(z, z), d(z, z), d(Bw, z)}
= d(Bw, z)

a contradiction. Therefore Bw = z = Tw. Thus the pair (B, T ) has a point of
coincidence. Hence we have shown that z = Sv = Av = Bw = Tw.

The same result is obtained if we assume TX to be complete. Indeed, if AX is
complete, then z ∈ AX ⊆ TX and if BX is complete, then z ∈ BX ⊆ SX.

As the pairs (A,S) and (B, T ) are weakly compatible, then Az = ASv = SAv =
Sz and Bz = BTw = TBw = Tz.

Next we claim that Az = z. If not, then by (3), we have

d(Az, z) = d(Az,Bw) < m(z, w)

= max{d(Sz, Tw), d(Sz, Az), d(Bw, Tw)}
= max{d(Az, z), d(Az, Az), d(z, z)} = d(Az, z)

a contradiction. Therefore, Az = z. Similarly, one can easily show that Bz = z.

Thus z is a common fixed point of A,B, S and T. Uniqueness of the fixed point is
an easy consequence of inequality (3.7.2). Hence the result. ¤

Example 3.8. Let X = [3,∞) and (X, d) be a multiplicative metric space defined
by d(x, y) = e|x−y| for all x, y in X. Define self maps A,B, S and T on X by

Ax = 3 for all x, Bx =
{

3,
x + 1,

if x = 3 or x > 5,
if 3 < x ≤ 5,

Sx =





3,
5,

x− 2,

if x = 3,
if 3 < x ≤ 5,
if x > 5,

Tx =
{

3,
x + 5,

if x = 3,
if x > 3.

Then the self maps A,B, S and T satisfy all the conditions of the above theorem
and have a unique common fixed point at x = 3. Moreover the maps satisfy neither
the ϕ−contractive condition nor the Banach type contractive condition. Also, one
may verify that the self maps A,B, S and T are discontinuous at the common fixed
point x = 3 and SX is a complete subspace of X.
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Now we shall improve the above theorem by using common property (E.A), Since
it relaxes containment of the range of one map into the range of other, which is uti-
lized to construct the sequence of joint iterates in common fixed point considerations.

Theorem 3.9. Let A,B, S and T be four self mappings on a multiplicative metric
space (X, d) satisfying (3.7.2) and the following conditions

(3.9.1) the pairs (A,S) and (B, T ) satisfy common property (E.A),
(3.9.2) SX and TX are closed subsets of X.

Then
(I) A and S have a coincidence point,
(II) B and T have a coincidence point.
Moreover, if the pairs (A,S) and (B, T ) are weakly compatible, then the maps

A,B, S and T have a unique common fixed point in X.

Proof. In view of (3.9.1), there exist two sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = z

for some z ∈ X. Since SX is closed subset of X, there exists a point u ∈ X such
that z = Su.

We claim that Au = z. If not, then by (3.7.2) or equation (3), take x = u, y = yn.

Then

d(Au,Byn) < m(u, yn) = max{d(Su, Tyn), d(Su, Au), d(Byn, T yn)}

Taking the limit as n →∞, we have

d(Au, z) < max{d(z, z), d(z,Au), d(z, z)} = d(z,Au)

a contradiction. Therefore, Au = z = Su, which shows that u is a coincidence point
of the pair (A,S).

Since TX is also a closed subset of X, lim
n→∞Tyn = z ∈ TX, and hence there exists

a v ∈ X such that Tv = z = Au = Su.

Now we show that Bv = z. If Bv 6= z, then by using (3.7.2), take x = u, y = v,

we get

d(Au,Bv) < m(u, v) = max{d(Su, Tv), d(Su,Au), d(Bv, Tv)}

Which implies that

d(z,Bv) < max{d(z, z), d(z, z), d(Bv, z)} = d(Bv, z)
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which is a contradiction. Therefore, Bv = z = Tv, which shows that v is a coinci-
dence point of the pair (B, T ).

Since the pairs (A,S) and (B, T ) are weakly compatible and

Au = Su, Bv = Tv, Az = ASu = SAu = Sz, Bz = BTv = TBv = Tz.

If Az 6= z, then by using (3.7.2), take x = z, y = v, we get

d(Az, Bv) < m(z, v) = max{d(Sz, Tv), d(Sz,Az), d(Bv, Tv)},

d(Az, z) < max{d(Az, z), d(Az, Az), d(Bv, Bv)} = d(Az, z)

a contradiction. Therefore, Az = z = Sz.

Similarly, one can prove that Bz = Tz = z. Hence, Az = Bz = Sz = Tz, and z

is a common fixed point of A,B, S and T. Uniqueness of the fixed point is an easy
consequence of the inequality (3.7.2). Hence the result. ¤

Example 3.10. Let X = [0,∞) and (X, d) be a multiplicative metric space defined
by d(x, y) = e|x−y| for all x, y in X. Define self maps A,B, S and T on X by

Ax =
{

2,
3,

if 0 ≤ x ≤ 2,
if x > 2,

Bx =
{

2,
1,

if 0 ≤ x ≤ 2,
if x > 2,

Sx =
{

4− x,
6,

if 0 ≤ x ≤ 2,
if x > 2,

Tx =
{

x,
9,

if 0 ≤ x ≤ 2,
if x > 2.

Take {xn = 2− ..1n} and {yn = 2− ..1n}. Then

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Tyn lim

n→∞Byn = 2 ∈ X.

Thus the pairs (A,S) and (B, T ) satisfy common property (E.A). One can easily
verify that the self maps A,B, S and T satisfy all the conditions of the above theorem
and have a unique common fixed point at x = 2. Here SX and TX are closed
subspaces of X. Moreover the maps neither satisfy the ϕ−contractive condition nor
the Banach type contractive condition. Also, one may notice that that neither
BX * SX nor AX * TX and the self maps A,B, S and T are discontinuous at the
common fixed point x = 2.

Finally, it is observed that common property (E.A) requires the completeness
or closedness of the subspaces for the existence of the common fixed point. So an
attempt has been made to drop the closedness of the subspaces from Theorem 3.9
by using the (JCLR) property.

Theorem 3.11. Let A,B, S and T be four self mappings on a multiplicative metric
space (X, d) satisfying (3.7.2) and the following conditions
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(3.11.1) the pairs (A, S) and (B, T ) satisfy the (JCLR) property.
Then
(I) A and S have a coincidence point,
(II) B and T have a coincidence point.
Moreover, if the pairs (A,S) and (B, T ) are weakly compatible, then the maps

A,B, S and T have a unique common fixed point in X.

Proof. As the pairs (A,S) and (B, T ) satisfy the (JCLR) property, there exist two
sequences {xn} and {yn} in X such that

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Byn = lim

n→∞Tyn = Su = Tu

for some u ∈ X.

First we assert that Au = Su. By (3.7.2) or equation (3), take x = u, y = yn, we
get

d(Au,Byn) < m(u, yn) = max{d(Su, Tyn), d(Su, Au), d(Byn, T yn)}
Taking the limit as n →∞, we have

d(Au, Su) < max{d(Sz, Su), d(Su, Au), d(Su, Su)} = d(Su,Au)

a contradiction. Therefore, Au = Su, which shows that u is a coincidence point of
the pair (A,S).

Secondly, we assert that Bu = Tu. By using (3.7.2), take x = u, y = u to get

d(Au, Bu) < m(u, u) = max{d(Su, Tu), d(Su,Au), d(Bu, Tu)},

d(Tu, Bu) < max{d(Su, Su), d(Tu, Tu), d(Bu, Tu)} = d(Tu, Bu),

a contradiction. Hence Bu = Tu, which shows that u is a coincidence point of the
pair (B, T ). Thus we have Tu = Bu = Au = Su.

Now, we assume that z = Tu = Bu = Au = Su. Since the pairs (A,S) and
(B, T ) are weakly compatible and

Au = Su, Bu = Tu, Az = ASu = SAu = Sz and Bz = BTu = TBu = Tz.

If Az 6= z, then, by using inequality (3.7.2), take x = z, y = u, to obtain

d(Az,Bu) < m(z, u) = max{d(Sz, Tu), d(Sz, Az), d(Bu, Tu)},

d(Az, z) < max{d(Az, z), d(Az,Az), d(z, z)} = d(Az, z),

a contradiction. Therefore, Az = z = Sz.
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Similarly, one can prove that Bz = Tz = z. Hence Az = Bz = Sz = Tz and z

is a common fixed point of A,B, S and T. Uniqueness of the fixed point is an easy
consequence of inequality (3.7.2). Hence the result. ¤

Example 3.12. Let X = [0,∞) and (X, d) be a multiplicative metric space defined
by d(x, y) = e|x−y| for all x, y in X. Define self maps A,B, S and T on X by

Ax =
{

2,
x + 1,

if 0 ≤ x ≤ 2 or x > 5,
if 2 < x ≤ 5,

Sx =
{

4− x,
6 + x,

if 0 ≤ x ≤ 2,
if x > 2,

Bx =
{

2,
x + 2,

if 0 ≤ x ≤ 2 or x > 5,
if 2 < x ≤ 5,

Tx =
{

x,
9 + x,

if 0 ≤ x ≤ 2,
if x > 2.

Take {xn = 2− ..1n} and {yn = 2− ..1n}. Then

lim
n→∞Axn = lim

n→∞Sxn = lim
n→∞Tyn lim

n→∞Byn = 2 = T (2) = S(2).

Thus the pairs (A,S) and (B, T ) satisfy the (JCLR) property. One can easily verify
that the self maps A,B, S and T satisfy all the conditions of the above theorem and
have a unique common fixed point at x = 2. Moreover the maps neither satisfy the
ϕ−contractive condition nor the Banach type contractive condition. Also, one may
notice that that neither BX * SX nor AX * TX and the self maps A,B, S and T

are discontinuous at the common fixed point x = 2.
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