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Abstract

The proposal of this study is a fast version of the conventional extreme learning machine
(ELM), called pseudoinverse matrix decomposition based incremental ELM (PDI-ELM). One
of the main problems in ELM is to determine the number of hidden nodes. In this study, the
number of hidden nodes is automatically determined. The proposed model is an incremental
version of ELM which adds neurons with the goal of minimization the error of the ELM
network. To speed up the model the information of pseudoinverse from previous step is taken
into account in the current iteration. To show the ability of the PDI-ELM, it is applied to
few benchmark classification datasets in the University of California Irvine (UCI) repository.
Compared to ELM learner and two other versions of incremental ELM, the proposed PDI-ELM
is faster.
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1. Introduction

Recently, extreme learning machine (ELM) has attracted much attention in the area of machine
learning [1–5]. Due to closed form solution, and free from learning input weights, ELM is
among popular learners. The structure of ELM backs to the single hidden layer feedforward
networks (SLFNs). Huang et al. [6] theoretically proved that the hidden nodes in SLFNs
can be randomly generated and be relaxed from learning. This explicit feature mapping plus
analytically determination of the output weights using least square method leads to a huge
reduction in the training time. There are many variants of ELM with different goals [7–9]. A
main drawback of ELM is as the number of hidden nodes grows, the ELM networks more
likely prone to the overfitting problem [10]. Several researches are conducted to resolve this
problem. On one hand, we wish to increase the number of hidden nodes to recognize the
complex relationships among data, and on the other hand, the model should avoid overfitting
problem to get good performance on test data.

The number of hidden nodes in ELM should be assigned by the user which is done by trial
and error. As the size of data increases, more hidden nodes are required to get better accuracy.
However it is still unknown how many neurons are enough as the size of data grows. There
should be an exhaustive work using cross validation technique or other ways to find the exact
size of hidden nodes.

The first study which incrementally adds hidden nodes to reach a pre-determined network
error is referred to as incremental ELM (I-ELM) [10]. This model adds nodes one by one and
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freezes the output weights of the current network when a new
node is added.

In this study we try to make a new competitive I-ELM net-
work in terms of pseudoinverse matrix decomposition. The
proposed model is abbreviated to PDI-ELM. This method is
competitive with regard to the speed of the algorithm and can
compete with its newest versions of I-ELMs which are briefly
introduced in next section.

Section 2 describes the related work and Section 3 outlines
the ELM and all the stages of the proposed PDI-ELM learner.
Section 4 shows results of ELM, EM-ELM, QRI-ELM and
the proposed PDI-ELM on four portions of the University of
California Irvine (UCI) data repository to illustrate and compare
the performance of models. Conclusions are drawn briefly in
Section 5.

2. Related Work

2.1 Extreme Learning Machine

Let assume N is the number of training samples and d is the di-
mension of feature size from dataset D = (xi, ti), i = 1, ..., N

where xi is input vector and ti is desirable output. For ELM
neural network with L hidden neuron, the network output is
[11]:

f (x) =

L∑
k=0

wkhk (θk;x) = h (Θ;x)w, (1)

where h (Θ;x) = [1, h1 (θ1;x) , ..., hL (θL;x)] maps the fea-
ture in hidden layer by given input x. Θ = [θ1, ..., θL] are
random parameters come from a uniform distribution, and w is
the weight vector of all neurons in hidden layer to the neuron
in output layer and finally hk (.) is the activation function of
hidden layer. In a compact form, Eq. (1) can be written as:

HB = T, (2)

where H is the kernel matrix and its elements plus bias term is
as follows:

H =


1 h1 (θ1;x1) . hL (θL;x1)

. . . .

. . . .

. . . .

1 h1 (θ1;xN ) . hL (θL;xN )

 . (3)

Each row of H is the output vector of a sample x. Given all
elements of matrix H , the goal is finding optimal weight vector

B (optimality in this sense that the desirable target matrix T

can be estimated well) which is:

B = H†T =
(
HTH

)−1
HTT. (4)

Estimated B is substituted into (2) to obtain the target matrix
T.

2.2 Incremental Based Extreme Learning Machines

A new algorithm of the I-ELM, called error minimized ELM
(EM-ELM) is proposed at [12]. This network can add nodes one
by one or group by group (Chunking). In every step, EM-ELM
minimizes error. This networks gets a better generalization
performance than I-ELM and works faster than I-ELM. The key
points of all I-ELM methods is as a new hidden node is added
to the network we expect to get smaller error of network than
before addition. This can be mathematically seen as follows:

Lemma 1 [12]. Given an SLFN, let H1 be the initial hidden
layer output matrix with L0 hidden nodes. If L1 − L0 hidden
nodes are added to the current network to make the new hidden
layer output matrix (Let call H2), then we have E(H2) <

E(H1).

The simple proof of this lemma can be found at [12].

In EM-ELM model, H†k+1 is iteratively found via H†k. When
one neuron is added to the existing network with k hidden
nodes, a new column called hk+1 is added to Hk and the Hk+1

is formed. To speed up this model, the H†k+1 is decomposed
into two parts; U and D. Then, using Schur complement and
matrix block inversion lemma, U and D are found like this:

Dk+1 =
hT
k+1 − hT

k+1HkH
†
k

hT
k+1hk+1 − hT

k+1HkH
†
khk+1

(5)

Uk+1 = H†k −H†khk+1Dk. (6)

And finally:

Bk+1 =

[
Uk+1

Dk+1

]
T. (7)

From computationally aspect, this way to find output weights
B takes lower time than traditional ELM model.

The latest version of I-ELM based methods, called QRI-
ELM [13] decomposes the pseudoinverse matrix of the hid-
den output layer based on QR factorization. Indeed, H=Q.R
wherein Q is an orthogonal matrix and R is an upper triangular
matrix. Hence, H† = R−1.QT . This way simplifies finding
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the pseudoinverse of H. QRI-ELM gets similar performance to
EM-ELM and I-ELM but is faster than other variants.

3. Proposed Method

In this section, our proposed method which is PDI-ELM algo-
rithm is introduced. Let us consider H and its pseudoinverse in
the partitioned form [14]:

Hk =
(
Hk−1 hk

)
, H†k =

(
Gk

gk

)
. (8)

Their multiplication gives:

HkH
†
k = Hk−1 Gk + hkgk. (9)

Now, if we further multiply above from left hand in H†k+1 :

H†k−1 = Gk + H†k−1hkgk. (10)

The above is attained because the following equations are
hold:

H†k−1HkH
†
k = H†k−1 , H†k−1Hk−1Gk = Gk. (11)

Therefore, the pseudoinverse matrix changes to:

H†k =

(
H†k−1 − dkgk

gk

)
, (12)

where:
dk = H†k−1hk. (13)

Now the goal is converted to finding gk. The product of Hk

in (8) and H†k in (12) gives:

HkH
†
k = Hk−1H

†
k−1 + ckgk, (14)

where:
ck = hk −Hk−1dk. (15)

And multiplying (12) from left hand by H†k−1 with consider-
ing (10) gives:

H†k−1ck = 0. (16)

The above equation means that ck is orthogonal to the column-
space of Hk−1. If the N training data are distinct, H is full
column rank with probability one when the number of hidden
nodes is equal or less than the number of samples N [11]. So,

we can conclude that ck is not equal to zero. Hence:

c†k × (ck = hk −Hk−1dk) → c†khk = 1. (17)

The above is attained because c†kck = 1 and we know that(
H†k−1ck

)†
= c+k Hk−1 = 0. Relying on (14) we would like

to know whether Hk−1H
†
k−1 + ckgk = Hk−1H

†
k−1 + ckc

†
k

or not. Let us assume:

Pk = Hk−1H
†
k−1 + ckc

†
k. (18)

It is not hard to see that:

Pkhk = hk , PkHk = Hk → Pk = HkH
†
k. (19)

This leads to find:

ckc
†
k = ckgk → gk = c†k. (20)

Putting (13), (15), (20) into (12) leads to finding H†k. Now we
summarize the whole steps of PDI-ELM algorithm as follows:

Algorithm 1: PDI-ELM Algorithm
. Given a set of training data, the maximum number of
Hidden nodes Lmax :

. Randomly generate the first hidden node L0.

. Calculate the hidden layer output matrix h1.

. Randomly generate the first hidden node L0.

. Compute the Output error E(h1).
// Recursive incremental Hidden nodes
. While Lk < Lmax

. k = k+1.

. Randomly generate new hidden layer column and add
the hidden node to the current SLFN.

. dk = H†k−1hk

. ck = hk −Hk−1dk

. gk = c†k

. H†k =

(
H†k−1 − dkgk

gk

)
. Bk = H†kT

. End While.

Note that If A is a matrix with m rows and n columns (mn)
and B has n rows and c columns, then, there will be mnc ele-
ment multiplications in their matrix product. So computational
complexity for AB is O(mnc). The most computational time
is for gk = c†k. Because it uses singular value decomposition
to compute the pseudoinverse of ck which is computationally
expensive. Moreover, we could change stopping condition
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Table 1. Descriptions of datasets

Dataset Train Test Attributes (R/I/N)*

WBCD 630 69 9 (0/9/0)

Ionosphere 310 41 33 (32/1/0)

Pima 576 192 8 (8/0/0)

Abalone 3500 677 8 (8/0/0)

R, real; I, integer; N, normal.

in the while loop to be a predefined error of network (E) in-
stead to reach the maximum number of hidden nodes. It is
worthwhile to point out that for dk = H†k−1hk only for the
first hidden node we have to compute the pseudoinverse of
H and for next iterations there is no need to compute it since

H†k =

(
H†k−1 − dkgk

gk

)
is found via H†k−1. So, this is the

key point why we use pseudoinverse decomposition and that is
why our proposed model works faster than ELM.

4. Experiments

4.1 Dataset Description

To verify the reliability of the proposed model, four benchmark
datasets of the UCI data repository are adopted, and results are
compared with some state-of-the-art classifiers. The datasets
are listed in the Table 1.

4.1.1 Experimental design

The sigmoid function is used for the hidden layer activation
function of the ELM. Input weights and biases are chosen from
a uniform distribution within [1, 1]. In addition, to evaluate
ELM performance, each algorithm is 50 times run and the
average results are reported. The algorithms are implemented
on a personal computer with an Intel processor, i5 core, 3.4
GHz, and 8 GB installed RAM.

4.1.2 Experiment results

This section gives an evaluation of the proposed method for
PDI-ELM model.

Table 2 reveals that PDI-ELM has slightly better train and
test time than QRI-ELM and better than EM-ELM model while
all models have very similar performance on test samples.

Although the results indicate the slightly better speed up
for our proposed PDI-ELM model, it is good to examine the
computational complexity in terms of big O. Hence, Table

Table 2. Performance comparison in benchmark datasets (when
certain numbers of hidden nodes are reached)

Dataset Model Nodes TR
time

TE
time

TE
Acc

WBCD EM 150 0.0033 7.50e-5 0.9648

QRI 0.0029 4.17e-5 0.9642

PDI 0.0027 4.03e-5 0.9642

Iono EM 100 0.0027 3.08e-5 0.8803

QRI 0.0022 2.86e-5 0.8811

PDI 0.0020 2.49e-5 0.8815

Pima EM 150 0.0025 2.11e-4 0.7755

QRI 0.0018 1.57e-4 0.7768

PDI 0.0015 1.34e-4 0.7745

Abalone EM 300 0.0972 6.45e-3 0.6578

QRI 0.0255 3.20e-3 0.6499

PDI 0.0184 1.45e-3 0.6506

Table 3. Computational complexities of a few incremental ELM
algorithms

Algorithm Computational complexity

PDI-ELM O((4L+ 2)N )

QRI-ELM [13] O((2L+ 3)N )

EM-ELM [12] O((5L+ 2)N )

ELM [11] O(2L2N + L3)

3 shows the computational complexity of ELM, EM-ELM,
QRI-ELM and PDI-ELM. The details regarding how to find
computational complexities for three compared models can be
found at [13].

Our proposed PDI-ELM is the first best one and QRI-ELM
is the second best algorithm. QRI-ELM is slightly slower than
PDI-ELM. It is worth noting that usually the number of training
samples N is much bigger than the number of hidden nodes L.

Figure 1 shows the number of hidden nodes one time versus
CPU time and another time versus mean square error for two
Pima and Ionosphere datasets. According to the plots, our
proposed PDI-ELM is slightly better than QRI-ELM in terms
of CPU time with similar performance in terms of MSE. PDI-
ELM is better than both EM-ELM and ELM. These algorithms
could also be implemented on regression problem.
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Figure 1. Results of all algorithms for CPU time and mean square error on (a) Pima and (b) Ionosphere datasets.

5. Conclusions

In this study, a method for incremental ELM was proposed
based on pseudoinverse matrix decomposition. This method
automatically determines the number of hidden nodes in ELM.
During the growth of network, the output weights is incremen-
tally updated. Findings show that new method is slightly faster
than its recent version which is based on QR factorization and
has similar generalization performance.
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