Generalizations of Polynomials in Chebyshev Form

Seon-Hong Kim ${ }^{\dagger}$

Abstract

Arbitrary polynomial of degree n can be written in Chebyshev form. In this paper, we generalize this Chebyshev form and study its root distributions.

Keywords: Polynomial, Chebyshev Form, Root Distribution

1. Introduction

Chebyshev polynomials are of great importance in many areas of mathematics, particularly approximation theory. Many papers and books ${ }^{[1,2]}$ have been written about these polynomials. Let $T_{n}(x)$ be the Chebyshev polynomial of the first kind. These polynomials satisfy the recurrence relations

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \quad(n \geq 1)
\end{aligned}
$$

Arbitrary polynomial of degree n can be written in terms of the Chebyshev polynomials of the first kind. Such a polynomial $p_{n}(x)$ is of the form

$$
p_{n}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)
$$

Define for a constant c,

$$
p_{n}(c, x)=\sum_{k=0}^{n-1} a_{k} T_{k}(x)+c T_{n}(x)
$$

Then $p_{n}(c, x)$ is a generalization of $p_{n}(x)$ and $p_{n}\left(a_{n}, x\right)$ $=p_{n}(x)$. If x_{0} is a root of $p_{n}(c, x)$, i.e., $p_{n}\left(c, x_{0}\right)=0$, then

$$
\begin{aligned}
0 & =\sum_{k=0}^{n-1} a_{k} T_{k}\left(x_{0}\right)+c T_{n}\left(x_{0}\right) \\
& =p_{n}\left(x_{0}\right)+\left(c-a_{n}\right) T_{n}\left(x_{0}\right)
\end{aligned}
$$

Department of Mathematics, Sookmyung Women's University, Seoul, 140-742 Korea
‘Corresponding author: shkim17@sookmyung.ac.kr (Received: May 11, 2016, Revised: June 14, 2016, Accepted: June 25, 2016)
and so c is uniquely determined by

$$
c=-\frac{p_{n}\left(x_{0}\right)}{T_{n}\left(x_{0}\right)}+a_{n}
$$

provided that $T_{n}\left(x_{0}\right) \neq 0$. In this case

$$
\begin{aligned}
p_{n}(c, x) & =\sum_{k=0}^{n-1} a_{k} T_{k}(x)+\left(-\frac{p_{n}\left(x_{0}\right)}{T_{n}\left(x_{0}\right)}+a_{n}\right) T_{n}(x) \\
& =p_{n}(x)-\frac{p_{n}\left(x_{0}\right)}{T_{n}\left(x_{0}\right)} T_{n}(x),
\end{aligned}
$$

and the roots (including x_{0}) of $p_{n}(c, x)=0$ satisfy

$$
p_{n}(x)=\frac{p_{n}\left(x_{0}\right)}{T_{n}\left(x_{0}\right)} T_{n}(x)
$$

2. Results and Examples

We summarize the above in Section 1 as follows.

Proposition 1 Let $p_{n}(x)$ be a polynomial of degree n.
Write

$$
p_{n}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)
$$

Define

$$
p_{n}(c, x)=\sum_{k=0}^{n-1} a_{k} T_{k}(x)+c T_{n}(x)
$$

If x_{0} is a root of $p_{n}(c, x)$, then all roots of $p_{n}\left(c, x_{0}\right)=0$ satisfy

$$
p_{n}(x)=\frac{p_{n}\left(x_{0}\right)}{T_{n}\left(x_{0}\right)} T_{n}(x)
$$

As an example of Proposition 1, we consider the polynomial

$$
p_{n}(x)=(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Using (1.5.32) in p. 55 of [2], we may compute that

$$
(1+x)^{n}=\sum_{k=0}^{n} A_{k} T_{k}(x)
$$

where \sum^{\prime} means a sum with the first term halved and

$$
\begin{aligned}
A_{k} & =\frac{1}{2^{k-1}}\left(\binom{n}{k}+\left[\begin{array}{c}
\left.\frac{n-k}{2}\right] \\
j=1 \\
\\
\end{array}=\frac{1}{2^{n-1}} \frac{\binom{k+2 j}{j}\binom{n}{k+2 j}}{2^{2 j}}\right)\right. \\
& =\frac{1}{2^{n-1}}\left({ }_{2} F_{1}(n+k, n-k, 2 n+1 ; 1)\right),
\end{aligned}
$$

where ${ }_{2} F_{1}(a, b, c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} x^{n},|x|<1$, is the hypergeometric function and $(\theta)_{n}=\theta(\theta+1) \ldots(\theta+n-1)$ for $n>0$ and $(\theta)_{0}=1$. So

$$
\begin{aligned}
p_{n}(x)= & (1+x)^{n}=\frac{1}{2^{n-1}} \\
& \sum_{k=0}^{n}{ }_{2} F_{1}(n+k, n-k, 2 n+1 ; 1) T_{k}(x)
\end{aligned}
$$

Suppose that x_{0} is a root of

$$
\begin{aligned}
p_{n}(c, x)= & \frac{1}{2^{n-1}} \sum_{k=0}^{n-1}{ }_{2} F_{1}(n+k, n-k, 2 n+1 ; 1) \\
& T_{k}(x)+c T_{n}(x)=0
\end{aligned}
$$

Then by Proposition 1, all roots of $p_{n}(c, x)=0$ satisfy

$$
(1+x)^{n}=\frac{\left(1+x_{0}\right)^{n}}{T_{n}\left(x_{0}\right)} T_{n}(x)
$$

We consider a special case when $x_{0}=-1 / 2$, and study root distribution of $p_{n}(c, x)=0$ when $n=6 k$ or $6 k+3$. Since for $k \geq 0$,

$$
T_{n}\left(\frac{1}{2}\right)= \begin{cases}1, & n=6 k \\ -1, & n=6 k+3 \\ \frac{1}{2}, & n=6 k+1,6 k+5 \\ -\frac{1}{2}, & n=6 k+2,6 k+4\end{cases}
$$

we have

$$
(1+x)^{n}= \begin{cases}\frac{1}{2^{n}} T_{n}(x), & n=6 k, 6 k+3 \\ \frac{-1}{2^{n-1}} T_{n}(x), & \text { otherwise }\end{cases}
$$

Proposition 2 Let $p_{n}(x)=(1+x)^{n}$. With the same notations used above, if $x_{0}=-1 / 2$ and $n=6 k$ or $6 k+3$, then all real roots of $p_{n}(c, x)=0$ lie in $(-\infty,-1 / 2]$ and there are exactly $n / 3$ or $n / 3+1$ real roots in $(-1,-1 / 2]$.

Proof Let

$$
f_{1}(x):=(1+x)^{n}, \quad f_{2}(x):=\frac{1}{2^{n}} T_{n}(x)
$$

and $x=\cosh \theta, \theta \geq 0$ so that $x \geq 1$. Then $T_{n}(x)=\cosh n \theta$, and

$$
f_{1}(x)-f_{2}(x)=\frac{1}{2^{n}}\left(\left(2+e^{\theta}+e^{-\theta}\right)^{n}-\frac{e^{n \theta}+e^{-n \theta}}{2}\right)>0
$$

So there are no real roots in $[1, \infty)$. If $-1 \leq x \leq 1$, then $\left|T_{n}(x) \leq 1\right|$ and so

$$
\left|f_{2}(x)\right| \leq \frac{1}{2^{n}}
$$

The equation $\left|f_{1}(x)\right|=\left|f_{2}(x)\right|$ implies that $-1 \leq x \leq-1 / 2$. We observe that $f_{1}(x)$ is increasing for $x \geq-1$ and, on the interval $[-1,1]$ all of the extrema of $f_{2}(x)$ have values that are either $1 / 2^{n}$ or $-1 / 2^{n}$. Since

$$
f_{1}\left(-\frac{1}{2}\right)=f_{2}\left(-\frac{1}{2}\right)=\frac{1}{2^{n}}
$$

and $f_{2}(x)$ have $n / 3$ roots

$$
f_{2}(-1)= \begin{cases}\frac{1}{2^{n}}, & n=6 k \\ -\frac{1}{2^{n}}, & n=6 k+3\end{cases}
$$

in $(-1,-1 / 2), f_{1}(x)=f_{2}(x)$ has exactly $n / 3$ or $n / 3+1$ real roots in $(-1,-1 / 2]$.

Remark In case of $x_{0}=-1 / 2$ and $n=6 k$ or $6 k+3$, it seems that there is only one real root in $(-\infty,-1]$. Other cases can be considered similarly.

References

[1] J. C. Mason and D. C. Handscomb, "Chebyshev polynomials", Boca Raton: Chapman and Hall/ CRC, 2003.
[2] T. J. Rivlin, "Chebyshev polynomials: From approximation theory to algebra and number theory", New York: John Wiley and Sons, 1990.

