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Generalizations of Polynomials in Chebyshev Form

Seon-Hong Kim'

Abstract

Arbitrary polynomial of degree n can be written in Chebyshev form. In this paper, we generalize this Chebyshev form

and study its root distributions.
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1. Introduction

Chebyshev polynomials are of great importance in
many areas of mathematics, particularly approximation
theory. Many papers and books!'? have been written
about these polynomials. Let 7,(x) be the Chebyshev
polynomial of the first kind. These polynomials satisfy
the recurrence relations

T,(z)=1, T,(z)=u=,

T, (z)=22T,(2)—T,_,(z) (n=>1)

Arbitrary polynomial of degree » can be written in
terms of the Chebyshev polynomials of the first kind.
Such a polynomial p,(x) is of the form

o (2) = Yo, T ()

k=0

Define for a constant c,

pn(c,:u) :nz:]aka(:r) JrCTn(ZL')

Then p,(c, x) is a generalization of p,(x) and p,(a,, x)
=p,(x). If x, is a root of p,(c, x), i.e., p.(c, x0)=0, then

n—1

0= Eaka(xO) +cT, (:co)
k=0

=p,(z,) +(c—a,) T, (z,)
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and so c is uniquely determined by

provided that T,(xo)=0. In this case

n—1 pn(xo)
prles) = S (2) +(—m+an) 7,(z)
=, (2) - 1;((2)) 7, (),

and the roots (including x,) of p,(c, x)=0 satisfy

2. Results and Examples
We summarize the above in Section 1 as follows.

Proposition 1 Let p,(x) be a polynomial of degree n.
Write

pn(x) = Zaka(.’K)
k=0
Define
n—1
p,(cx) = Eaka(x) +cT,(z)
k=0

If x, is a root of p,(c, x), then all roots of p,(c, x¢)=0
satisfy
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p,(z) =

As an example of Proposition 1, we consider the pol-
ynomial

p,(z) =(1+z)" = 2"] (Z)xk

k=0

Using (1.5.32) in p. 55 of [2], we may compute that

(14a2)" :kijo'Aka(iU)

where 3" means a sum with the first term halved and

A7)
1 n J k+2j
A= 2k—1((k)+ = o2 J

1 I(1+2n)
ol T(1—k+n)I(1+k+n)
1

(F (n+kn—k2n+1;1)),

T g1

where ,Fi(a, b, c; x)= i %’x" , |x| <1, is the hyper-
n=0 e

geometric function and (6),=8(6+ 1)...(0+n-1) for
n>0 and (d),=1. So

1

n—1

p,(z)=(1+2)" =

S F(ntkn—k2n+1;1) T, (z)
k=0

Suppose that x, is a root of

n—1

1 ’
Fkgo Fi(n+kn—k2n+1;1)

p,(cz) =
Tk(;v) +cTn(a:) =0

Then by Proposition 1, all roots of p,(c, x)=0 satisfy

(14z,)"

(1+x)" = W

T, (x)

We consider a special case when xo =—1/2, and study
root distribution of p,(c, xX)=0 when n=6k or 6k+3.
Since for k> 0,

1, n = 6k,
-1, n==6k+3,
T 1 l n=6k+1,6k+5
mo2) ]2’ ’ i
—%, n=6k+2,6k+4,
we have
1
;Tn(x), n =6k, 6k+3,
(1+z)" =17,
i1 T,(z), otherwise.

Proposition 2 Let p,(x) = (1+x)". With the same nota-
tions used above, if xo=—1/2 and n = 6k or 6k+3, then
all real roots of p,(c, x) =0 lie in (o0, —1/2] and there
are exactly »n/3 or n/3+1 real roots in (-1, —1/2].

Proof Let

1
fi(z) =1+=)", fz(w)r=¥Tn(x)
and x = coshd, 8> 0 so that x > 1. Then 7,,(x) = cosh n6,
and

nf —nf
_ +
(24¢" e ) =5 ]>0

1
fi(x) —fz(x)=;

So there are no real roots in [1, ). If -1 <x < 1, then
|T,(x) < 1] and so

1
|f 2 () | = ?
The equation |fi(x)| = |2(x)| implies that —1 <x <—1/2.

We observe that fi(x) is increasing for x > —1 and, on the
interval [—1, 1] all of the extrema of f,(x) have values
that are either 1/2” or —1/2". Since

22

and f5(x) have n/3 roots

1

9 n
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in (=1, —1/2), fi(x) = f2(x) has exactly n/3 or n/3+1 real
roots in (-1, —1/2].

Remark 1In case of xo=-1/2 and n= 6k or 6k+3, it

seems that there is only one real root in (—oo, —1]. Other
cases can be considered similarly.
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