DOI QR코드

DOI QR Code

발광다이오드를 이용한 광파장에 따른 Chlorella vulgaris의 생장과 지방산 생산에 미치는 효과

Effect of Light Quality on Growth and Fatty Acid Production in Chlorella vugaris Using Light Emitting Diodes

  • 김지훈 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 김동건 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이철균 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과)
  • Kim, Z-Hun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University) ;
  • Kim, Dong Keun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy R&D Center & Department of Biological Engineering, Inha University)
  • 투고 : 2016.06.03
  • 심사 : 2016.06.17
  • 발행 : 2016.06.30

초록

Microalgae are considered as superior biodiesel producers, because they could effectively produce high amount of lipid with fast growth rate. In this study, Chlorella vulgaris was exposed to various light wavelengths (${\lambda}_{max}$ 470 nm, ${\lambda}_{max}$ 525 nm, and ${\lambda}_{max}$ 660 nm) using light emitting diodes (LEDs) to examine effect of light quality on their growth and fatty acid production in 0.4-L bubble column photobioreactors. Fluorescent lamps were also used as polychromatic light sources (control). From the results, biomass productivity was varied by light wavelength from 0.05 g/L/day to 0.30 g/L/day. Maximum biomass productivity was obtained from red LED among tested ones. We also observed that contents of oleic acid and linolenic acid, which affect biodiesel properties, were significantly changed depending on supplied wavelength. These results indicated that production of algal biomass, and fatty acid content and productivity could be improved or controlled by supplying specific light wavelength.

키워드

참고문헌

  1. Borowitzka, M. A. and Moheimani, N. R. 2013. Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Change 18(1), 12-25.
  2. Lee, H.-S, Kim, Z.-H, Park, H. and Lee, C.-G. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39 (5), 815-823. https://doi.org/10.1007/s00449-016-1561-5
  3. Hong, S.-J. and Lee, C.-G. 2008. Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC6071. Biotechnol. Bioprocess Eng. 13(4), 491-498. https://doi.org/10.1007/s12257-008-0154-9
  4. Heimann, K. 2016. Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr. Opin. Biotechnol. 38, 183-189. https://doi.org/10.1016/j.copbio.2016.02.024
  5. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4), 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  6. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  7. Mata, T. M., Martins, A. A. and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  8. Ra, C., Kang, C., Jung, J., Jeong, G. and Kim, S. 2016. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour. Technol. 212, 254-261. https://doi.org/10.1016/j.biortech.2016.04.059
  9. Schulze, P. S. C., Pereira, H. G. C., Santos, T. F. C., Schueler, L., Guerra, R., Barreira, L. A., Perales, J. A. and Varela, J. C. S. 2016. Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res. 16, 387-398. https://doi.org/10.1016/j.algal.2016.03.034
  10. Seo, Y. H., Cho, C., Lee, J. and Han, J. 2014. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. Bioresour. Technol. 173, 193-197. https://doi.org/10.1016/j.biortech.2014.09.012
  11. Kim, Z.-H, Lee, H-S. and Lee, C.-G. 2009. Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis. Algae 24(2), 121-127. https://doi.org/10.4490/ALGAE.2009.24.2.121
  12. Lee, C.-G. and Palsson B. O. 1994. High-density algal photobioreactors using light-emitting diodes. Biotechnol. Bioeng. 44(10), 1161-1167. https://doi.org/10.1002/bit.260441002
  13. Choi, S., Suh, I. S. and Lee, C.-G. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rates as a control parameter. Enzyme Microb. Technol. 33(4), 403-409. https://doi.org/10.1016/S0141-0229(03)00137-6
  14. Richmond, A. 2003. Handbook of microalgal culture: biotechnology and applied phycology. In: Masojidek, J., Koblizek, M., Torzillo, G. (Eds.), Photosynthesis in Microalgae. Blackwell Publishers, pp. 20-39.
  15. Katsuda, T., Lababpour, A., Shimahara, K. and Katoh, S. 2004. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb. Technol. 35, 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016
  16. Dunn, R. O. 2005. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process. Technol. 86(10), 1071-1085. https://doi.org/10.1016/j.fuproc.2004.11.003
  17. Spolaorea, P., Joannis-Cassana, C., Duran, E. and Isamberta, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101(2), 87-96. https://doi.org/10.1263/jbb.101.87
  18. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54(3), 438-463. https://doi.org/10.1093/ajcn/54.3.438
  19. Rodriguez-Leyva, D., Bassett, C., McCullough, R. and Pierce, G. N. 2010. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can. J. Cardiol. 26(9), 489-496. https://doi.org/10.1016/S0828-282X(10)70455-4